Citation: | DU Ning, ZHANG Xianfeng, XIONG Wei, YANG Ying, HUANG Bingyu, CHEN Haihua. Energy-release characteristics of typical reactive materials under explosive loading[J]. Explosion And Shock Waves, 2020, 40(4): 042301. doi: 10.11883/bzycj-2019-0239 |
[1] |
门建兵, 蒋建伟, 帅俊峰, 等. 复合反应破片爆炸成型与毁伤实验研究 [J]. 北京理工大学学报, 2010, 30(10): 1143–1146. DOI: 10.1002/9783527628650.ch2.
MEM J B, JIANG J W, SHUAI J F, et al. Experimental research on formation and terminal effect of explosively formed compound energetic structural fragments [J]. Transactions of Beijing Institute of Technology, 2010, 30(10): 1143–1146. DOI: 10.1002/9783527628650.ch2.
|
[2] |
张先锋, 赵晓宁. 多功能含能结构材料研究进展 [J]. 含能材料, 2009, 17(6): 731–739. DOI: 10.3969/j.issn.1006-9941.2009.06.021.
ZHANG X F, ZHAO X N. Review on multifunctional energetic structural materials [J]. Chinese Journal of Energetic Materials, 2009, 17(6): 731–739. DOI: 10.3969/j.issn.1006-9941.2009.06.021.
|
[3] |
陈鹏, 卢芳云, 覃金贵, 等. 含钨活性材料动态压缩力学性能 [J]. 兵工学报, 2015, 36(10): 1861–1866. DOI: 10.3969/j.issn.1000-1093.2015.10.006.
CHENG P, LU F Y, QIN J G, et al. Dynamic compressive mechanical properties of tungstenic reactive material [J]. Acta Armamentarii, 2015, 36(10): 1861–1866. DOI: 10.3969/j.issn.1000-1093.2015.10.006.
|
[4] |
VARAS J M, PHILIPPENS M, MEIJIER S R, et al. Physics of IED blast shock tube simulations for mTBI research [J]. Frontiers in Neurology, 2011, 2(58): 1–14. DOI: 10.3389/fneur.2011.00058.
|
[5] |
ZHANG F, WILSON W H. The effect of charge reactive metal cases on air blast [J]. American Institute of Physics Conference Proceedings, 2009, 1195(1): 149–152. DOI: 10.1063/1.3295089.
|
[6] |
ARNOD W, ROTTENKOLBER E. Fragment mass distribution of metal cased explosive charges [J]. International Journal of Impact Engineering, 2008, 35(12): 1393–1398. DOI: 10.1016/j.ijimpeng.2008.07.049.
|
[7] |
AMES R. Energy release characteristics of impact-initiated energetic materials [J]. MRS Proceedings, 2005, 896(3): 321–333. DOI: 10.1557/PROC-0896-H03-08.
|
[8] |
KELLY S C, THADHANI N N. Shock compression response of highly reactive Ni+Al multilayered thin foils [J]. Journal of Applied Physics, 2016, 119(9): 095903. DOI: 10.1063/1.4942931.
|
[9] |
CLEMENSON M. Enhancing reactivity of aluminum-based structural energetic materials [D]. Illinois: University of Illinois at Urbana-Champaign, 2015: 52−58.
|
[10] |
FABIGNON Y, TRUBERT J F, LAMBERT D, et al. Combustion of aluminum particles in solid rocket motors [C] // 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Huntsville, Alabama, USA: American Institute for Aeronautics and Astronautics, 2003: 1. DOI: 10.2514/6.2003-4807.
|
[11] |
ORTH L, KRIER H. Shock physics for nonideal detonations of metallized energetic explosives [J]. Symposium on Combustion, 1998, 27(2): 2327–2333. DOI: 10.1016/S0082-0784(98)80083-0.
|
[12] |
GUADARRAMA J, DREIZIN E L, GLUMAC N. Reactive liners prepared using powders of aluminum and aluminum-magnesium alloys [J]. Propellants, Explosives, Pyrotechnics, 2016, 41(4): 605–611. DOI: 10.1002/prep.201500230.
|
[13] |
FROST D L, GOROSHIN S, JANIDLO S, et al. Fragmentation of reactive metallic particles during impact with a plate [J]. American Institute of Physics Conference Proceedings, 2004, 706(1): 451–454. DOI: 10.1063/1.1780275.
|
[14] |
AMES R. Vented chamber calorimetry for impact-initiated energetic materials [C] // 43rd AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, USA: American Institute for Aeronautics and Astronautics, 2013: 10−13. DOI: 10.2514/6.2005-279.
|
[15] |
XIONG W, ZHANG X, WU Y, et al. Influence of additives on microstructures, mechanical properties and shock-induced reaction characteristics of Al/Ni composites [J]. Journal of Alloys and Compounds, 2015, 648: 540–549. DOI: 10.1016/j.jallcom.2015.07.004.
|
[16] |
WEI C T, VITALI E, JIANG F, et al. Quasi-static and dynamic response of explosively consolidated metal-aluminum powder mixtures [J]. Acta Materialia, 2012, 60(3): 1418–1432. DOI: 10.1016/j.actamat.2011.10.027.
|
[17] |
ZHANG X F, SHI A S, QIAO L, et al. Experimental study on impact-initiated characters of multifunctional energetic structural materials [J]. Journal of Applied Physics, 2013, 113(8): 2129–1156. DOI: 10.1063/1.4793281.
|
[18] |
饶国宁. 爆炸能量输出特性及爆炸波与目标作用的研究[D]. 南京: 南京理工大学, 2007: 1−20.
|
[19] |
KINNEY G F, GRAHAM K J. Explosive shocks in air [M]. 2nd ed. New York: Springer-Verlag, 1985: 35−49.
|
[20] |
任会兰, 李尉, 刘晓俊, 等. 钨颗粒增强铝/聚四氟乙烯材料的冲击反应特性 [J]. 兵工学报, 2016, 37(5): 872–878. DOI: 10.3969/j.issn.1000-1093.2016.05.014.
REN H L, LI W, LIU X J, et al. Reaction behaviors of Al/PTFE materials enhanced by W particles [J]. Acta Armamentarii, 2016, 37(5): 872–878. DOI: 10.3969/j.issn.1000-1093.2016.05.014.
|
[21] |
张先锋, 李向东, 沈培辉, 等. 终点效应学[M]. 北京: 北京理工大学出版社, 2017: 67−72.
|
[22] |
张守中. 爆炸与冲击动力学[M]. 北京: 兵器工业出版社, 1993: 369−375.
|