Volume 40 Issue 7
Jul.  2020
Turn off MathJax
Article Contents
FAN Jiang, YUAN Yuan, LIAO Huming, YUAN Qinghao, CHEN Gaoxiang, LI Bo. Numerical simulation of Whipple shield hypervelocity impact based on optimal transportation meshfree method[J]. Explosion And Shock Waves, 2020, 40(7): 074201. doi: 10.11883/bzycj-2019-0241
Citation: FAN Jiang, YUAN Yuan, LIAO Huming, YUAN Qinghao, CHEN Gaoxiang, LI Bo. Numerical simulation of Whipple shield hypervelocity impact based on optimal transportation meshfree method[J]. Explosion And Shock Waves, 2020, 40(7): 074201. doi: 10.11883/bzycj-2019-0241

Numerical simulation of Whipple shield hypervelocity impact based on optimal transportation meshfree method

doi: 10.11883/bzycj-2019-0241
  • Received Date: 2019-06-14
  • Rev Recd Date: 2019-02-18
  • Publish Date: 2020-07-01
  • The Whipple shield is often used for protecting spacecraftfrom the impact of space debris. There are a lot of defects in the general numerical simulation methods for hypervelocity impact problems, thus this paper used OTM (optimal transportation meshfree)method to simulate the impacting process. OTM is a Lagrangian meshless method which ischaracterized by applying optimal transportation theory to discretize time, using a set of nodal-points with position information and a set of material-points with material information to discretize space,utilizing LME (local maximum entropy) approximation schemes to get interpolation functions, and simulating the failure of materials by material-point failure method related toenergy release rate. In this paper, OTM method was firstly used to simulate the impact of an aluminum ball on a single aluminum plate. The applicability of OTM method in hypervelocity impact was verified by comparing with the test results and the calculation results of other SPH methods. Then we used OTM method to simulate the hypervelocity impact of Whipple shield. The damage of the outer bumper and the spacecraft wall predicted by the OTM method was compared with the experimental results. It could be seen that the OTM method could not only predict the diameter of the bullet hole of the outer bumper, but also accurately simulate the spalling and penetration of the spacecraft wall, and the shape of the debris cloud.
  • loading
  • [1]
    CHRISTIANSEN E L, KERR J H. Ballistic limit equations for spacecraft shielding [J]. International Journal of ImpactEngineering, 2001, 26(1−10): 93–104. DOI: 10.1016/S0734-743X(01)00070-7.
    [2]
    阎晓军, 张玉珠, 聂景旭. 超高速碰撞下Whipple防护结构的数值模拟 [J]. 宇航学报, 2002, 23(5): 81–84. DOI: 10.3321/j.issn:1000-1328.2002.05.016.

    YAN X J, ZHANG Y Z, NIE J X. Numerical simulation of the whipple shield under hypervelocity impact [J]. Journal of Astronautics, 2002, 23(5): 81–84. DOI: 10.3321/j.issn:1000-1328.2002.05.016.
    [3]
    WHIPPLE F L. Meteorites and space travel [J]. Astronomical Journal, 1947, 52(5): 131.
    [4]
    张婷婷, 魏强, 侯庆志, 等. 空间碎片高速撞击的数值模拟方法评述 [J]. 材料导报, 2017, 31(S2): 438–442, 448.

    ZHANG T T, WEI Q, HOU Q Z, et al. Review of numerical simulation methods for hypervelocity impact of space debris [J]. Materials Review, 2017, 31(S2): 438–442, 448.
    [5]
    QUAN X, BIRNBAUM N K, COWLER M S, et al. Numerical simulation of structural deformation under shock and impact loads using a coupled multi-solver approach [C] // Proceedings of the 5th Asia-Pacific Conference on Shock and Impact Loads on Structures. Hunan, China, 2003.
    [6]
    闫晓军, 张玉珠, 聂景旭. 空间碎片超高速碰撞数值模拟的SPH方法 [J]. 北京航空航天大学学报, 2005, 31(3): 351–354. DOI: 10.3969/j.issn.1001-5965.2005.03.019.

    YAN X J, ZHANG Y Z, NIE J X. Numerical simulation of space debris hypervelocity impact using SPH method [J]. Journal of Beijing University of Aeronauticsand Astronautics, 2005, 31(3): 351–354. DOI: 10.3969/j.issn.1001-5965.2005.03.019.
    [7]
    刘有英, 王海福. 高速碰撞下航天器防护结构效能评价 [J]. 弹箭与制导学报, 2005, 25(4): 359–361. DOI: 10.3969/j.issn.1673-9728.2005.04.117.

    LIU Y Y, WANG H F. Evaluations of high-velocity impact for spacecraft shields [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2005, 25(4): 359–361. DOI: 10.3969/j.issn.1673-9728.2005.04.117.
    [8]
    强洪夫, 范树佳, 陈福振, 等. 基于拟流体模型的SPH新方法及其在弹丸超高速碰撞薄板中的应用 [J]. 爆炸与冲击, 2017, 37(6): 990–1000. DOI: 10.11883/1001-1455(2017)06-0990-11.

    QIANG H F, FAN S J, CHEN F Z, et al. A new smoothed particle hydrodynamics method based on the pseudo-fluid model and its application in hypervelocity impact of a projectile on a thin plate [J]. Explosion and Shock Waves, 2017, 37(6): 990–1000. DOI: 10.11883/1001-1455(2017)06-0990-11.
    [9]
    FERNÁNDEZ-MÉNDEZ S, HUERTA A. Imposing essential boundary conditions in mesh-free methods [J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(12/13/14): 1257–1275. DOI: 10.1016/j.cma.2003.12.019.
    [10]
    尹晓文. 物质点法在Whipple防护结构高速冲击中的应用研究[D]. 太原: 太原理工大学, 2018.
    [11]
    ACIN M. SPH-Introduction to a meshless method [DB/OL]. [2015-06-13]. http://www.acin.net/2015/06/13/sph-introduction-to-a-meshless-method/.
    [12]
    LI B, HABBAL F, ORTIZ M. Optimal transportation meshfree approximation schemes for fluid and plastic flows [J]. International Journal for Numerical Methods in Engineering, 2010, 83(12): 1541–1579. DOI: 10.1002/nme.2869.
    [13]
    柳森, 李毅, 黄洁, 等. 用于验证数值仿真的Whipple屏超高速撞击试验结果 [J]. 宇航学报, 2005, 26(4): 505–508. DOI: 10.3321/j.issn:1000-1328.2005.04.024.

    LIU S, LI Y, HUANG J, et al. Hypervelocity impact test results of Whipple shield for the validation of numerical simulation [J]. Journal of Astronautics, 2005, 26(4): 505–508. DOI: 10.3321/j.issn:1000-1328.2005.04.024.
    [14]
    ARROYO M, ORTIZ M. Local maximum-entropy approximation schemes [M] // GRIEBEL M, SCHWEITZERM A. Meshfree Methods for Partial Differential EquationsIII. Berlin, Heidelberg: Springer, 2006. DOI: 10.1007/978-3-540-46222-4_1.
    [15]
    LI B, KIDANE A, RAVICHANDRAN G, et al. Verification and validation of the optimal transportation meshfree (OTM) simulation of terminal ballistics [J]. International Journal of Impact Engineering, 2012, 42: 25–36. DOI: 10.1016/j.ijimpeng.2011.11.003.
    [16]
    KANE C, MARSDEN J E, ORTIZ M. Symplectic-energy-momentum preservingvariational integrators [J]. Journal of Mathematical Physics, 1999, 40(7): 3353–3371. DOI: 10.1063/1.532892.
    [17]
    JIANG F, LIAO H M, KE R J, et al. A monolithic Lagrangian mesh free scheme for fluid-structure interaction problems within the OTM framework [J]. Computer Methods in Applied Mechanics and Engineering, 2018, 337: 198–219. DOI: 10.1016/j.cma.2018.03.031.
    [18]
    林健宇, 罗斌强, 徐名扬, 等. 铝弹丸超高速撞击防护结构的研究进展 [J]. 高压物理学报, 2019, 33(3): 030112. DOI: 10.11858/gywlxb.20190774.

    LIN J Y, LUO B Q, XU M Y, et al. Progress of aluminum projectile impacting on plate with hypervelocity [J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030112. DOI: 10.11858/gywlxb.20190774.
    [19]
    管公顺, 朱耀, 迟润强, 等. 铝双层板结构撞击损伤的板间距效应实验研究 [J]. 材料科学与工艺, 2008, 16(5): 692–695. DOI: 10.3969/j.issn.1005-0299.2008.05.025.

    GUAN G S, ZHU Y, CHI R Q, et al. Experimental investigation of space effect on damage of aluminum dual-wall structure by hypervelocity impact [J]. Materials Science and Technology, 2008, 16(5): 692–695. DOI: 10.3969/j.issn.1005-0299.2008.05.025.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(6)

    Article Metrics

    Article views (3238) PDF downloads(78) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return