Volume 40 Issue 6
Jun.  2020
Turn off MathJax
Article Contents
ZHANG En, LU Guoyun, YANG Huiwei, CAO Ruidong, CHEN Pengcheng. Band gap features of metaconcrete and shock wave attenuation in it[J]. Explosion And Shock Waves, 2020, 40(6): 063301. doi: 10.11883/bzycj-2019-0252
Citation: ZHANG En, LU Guoyun, YANG Huiwei, CAO Ruidong, CHEN Pengcheng. Band gap features of metaconcrete and shock wave attenuation in it[J]. Explosion And Shock Waves, 2020, 40(6): 063301. doi: 10.11883/bzycj-2019-0252

Band gap features of metaconcrete and shock wave attenuation in it

doi: 10.11883/bzycj-2019-0252
  • Received Date: 2019-06-25
  • Rev Recd Date: 2020-04-26
  • Available Online: 2020-05-25
  • Publish Date: 2020-06-01
  • Based on the research ideas of metamaterials, a novel concrete with wave-absorbing features was designed by introducing local resonant aggregates into plain concrete. First, the effective mass of the designed metaconcrete was calculated by means of structural dynamics. Simplified models for the start and cutoff frequencies of the band gap in the metaconcrete were established, and the theoretical expressions for the band gap start and cutoff frequencies were proposed. The effects of the following parameters on the band gap features of the metaconcrete were analyzed by the proposed theoretical models, including the coating elastic modulus, core density, matrix density, aggregate volume ratio, and ratio of core length to soft thickness. Finally, the numerical simulations were carried out to compare the attenuation effects of shock waves in the metaconcrete to those in the plain concrete. The research results reveal that the flexible coating results in a low-frequency attenuation domain, but the width of the attenuation domain is narrow; while the high elastic modulus coating can form a wider attenuation domain, but the attenuation domain has a higher start frequency. A low frequency and wide band gap can be obtained by selecting large-density core material and small-density matrix material. A wide band gap can be achieved by increasing the proportion of aggregate volume and the ratio of core length to soft thickness. Compared with the plain concrete, the metaconcrete has a better attenuation effect on shock wave.
  • loading
  • [1]
    WEGENER M. Metamaterials beyond optics [J]. Science, 2013, 342(6161): 939–940. DOI: 10.1126/science.1246545.
    [2]
    LANDY N, SMITH D R. A full-parameter unidirectional metamaterial cloak for microwaves [J]. Nature Materials, 2013, 12(1): 25–28. DOI: 10.1038/nmat3476.
    [3]
    LI B, TAN K T, CHRISTENSEN J. Heat conduction tuning by hyperbranched nanophononic metamaterials [J]. Journal of Applied Physics, 2018, 123(20): 205105. DOI: 10.1063/1.5023487.
    [4]
    LI B, TAN K T, CHRISTENSEN J. Tailoring the thermal conductivity in nanophononic metamaterials [J]. Physical Review B, 2017, 95(14): 144305. DOI: 10.1103/PhysRevB.95.144305.
    [5]
    WANG Y Z, LI F M, WANG Y S. Influences of active control on elastic wave propagation in a weakly nonlinear phononic crystal with a monoatomic lattice chain [J]. International Journal of Mechanical Sciences, 2016, 106: 357–362. DOI: 10.1016/j.ijmecsci.2015.12.004.
    [6]
    BANERJEE B, NAGY P B. An introduction to metamaterials and waves in composites [J]. Journal of the Acoustical Society of America, 2012, 131(2): 1665. DOI: 10.1121/1.3672699.
    [7]
    AL BA'BA'A H B, NOUH M. Mechanics of longitudinal and flexural locally resonant elastic metamaterials using a structural power flow approach [J]. International Journal of Mechanical Sciences, 2017, 122: 341–354. DOI: 10.1016/j.ijmecsci.2017.01.034.
    [8]
    LIU X N, HU G K, HUANG G L, et al. An elastic metamaterial with simultaneously negative mass density and bulk modulus [J]. Applied Physics Letters, 2011, 98(25): 251907. DOI: 10.1063/1.3597651.
    [9]
    LI J, CHAN C T. Double-negative acoustic metamaterial [J]. Physical Review E, 2004, 70(5): 055602(R). DOI: 10.1103/PhysRevE.70.055602.
    [10]
    LIU Z Y, ZHANG X X, MAO Y W, et al. Locally resonant sonic materials [J]. Science, 2000, 289(5485): 1734–1736. DOI: 10.1126/science.289.5485.1734.
    [11]
    LIU Z Y, CHAN C T, SHENG P, et al. Elastic wave scattering by periodic structures of spherical objects: theory and experiment [J]. Physical Review B, 2000, 62(4): 2446–2457. DOI: 10.1103/PhysRevB.62.2446.
    [12]
    LIU Z Y, CHAN C T, SHENG P. Three-component elastic wave band-gap material [J]. Physical Review B, 2002, 65(16): 165116. DOI: 10.1103/PhysRevB.65.165116.
    [13]
    LIU Z Y, CHAN C T, SHENG P. Analytic model of phononic crystals with local resonances [J]. Physical Review B, 2005, 71(1): 014103. DOI: 10.1103/PhysRevB.71.014103.
    [14]
    YANG Z, DAI H M, CHAN N H, et al. Acoustic metamaterial panels for sound attenuation in the 50−1 000 Hz regime [J]. Applied Physics Letters, 2010, 96(4): 041906. DOI: 10.1063/1.3299007.
    [15]
    YANG Z, MEI J, YANG M, et al. Membrane-type acoustic metamaterial with negative dynamic mass [J]. Physical Review Letters, 2008, 101(20): 204301. DOI: 10.1103/PhysRevLett.101.204301.
    [16]
    吴健, 白晓春, 肖勇, 等. 一种多频局域共振型声子晶体板的低频带隙与减振特性 [J]. 物理学报, 2016, 65(6): 064602. DOI: 10.7498/aps.65.064602.

    WU J, BAI X C, XIAO Y, et al. Low frequency band gaps and vibration reduction properties of a multi-frequency locally resonant phononic plate [J]. Acta Physica Sinica, 2016, 65(6): 064602. DOI: 10.7498/aps.65.064602.
    [17]
    张印, 尹剑飞, 温激鸿, 等. 基于质量放大局域共振型声子晶体的低频减振设计 [J]. 振动与冲击, 2016, 35(17): 26–32. DOI: 10.13465/j.cnki.jvs.2016.17.005.

    ZHANG Y, YIN J F, WEN J H, et al. Low frequency vibration reduction design for inertial local resonance phononic crystals based on inertial amplification [J]. Journal of Vibration and Shock, 2016, 35(17): 26–32. DOI: 10.13465/j.cnki.jvs.2016.17.005.
    [18]
    BRÛLÉ S, JAVELAUD E H, ENOCH S, et al. Experiments on seismic metamaterials: molding surface waves [J]. Physical Review Letters, 2014, 112(13): 133901. DOI: 10.1103/PhysRevLett.112.133901.
    [19]
    郜英杰, 范华林, 张蓓, 等. 超材料消波混凝土板在二维平面波作用下的削波效应研究 [J]. 振动与冲击, 2018, 37(20): 39–44. DOI: 10.13465/j.cnki.jvs.2016.17.005.

    GAO Y J, FAN H L, ZHANG B, et al. Wave attenuation of super-material wave absorbing concrete panel subjected to two-dimensional plane wave [J]. Journal of Vibration and Shock, 2018, 37(20): 39–44. DOI: 10.13465/j.cnki.jvs.2016.17.005.
    [20]
    LI Q Q, HE Z C, LI E, et al. Design of a multi-resonator metamaterial for mitigating impact force [J]. Journal of Applied Physics, 2019, 125(3): 035104. DOI: 10.1063/1.5029946.
    [21]
    HUANG H H, SUN C T, HUANG G L. On the negative effective mass density in acoustic metamaterials [J]. International Journal of Engineering Science, 2009, 47(4): 610–617. DOI: 10.1016/j.ijengsci.2008.12.007.
    [22]
    SHENG X, ZHAO C Y, YI Q, et al. Engineered metabarrier as shield from longitudinal waves: band gap properties and optimization mechanisms [J]. Journal of Zhejiang University: Science A: Applied Physics and Engineering, 2018, 19(9): 663–675. DOI: 10.1631/jzus.A1700192.
    [23]
    MITCHELL S J, PANDOLFI A, ORTIZ M. Metaconcrete: designed aggregates to enhance dynamic performance [J]. Journal of the Mechanics and Physics of Solids, 2014, 65: 69–81. DOI: 10.1016/j.jmps.2014.01.003.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article Metrics

    Article views (5748) PDF downloads(117) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return