Citation: | ZHANG En, LU Guoyun, YANG Huiwei, CAO Ruidong, CHEN Pengcheng. Band gap features of metaconcrete and shock wave attenuation in it[J]. Explosion And Shock Waves, 2020, 40(6): 063301. doi: 10.11883/bzycj-2019-0252 |
[1] |
WEGENER M. Metamaterials beyond optics [J]. Science, 2013, 342(6161): 939–940. DOI: 10.1126/science.1246545.
|
[2] |
LANDY N, SMITH D R. A full-parameter unidirectional metamaterial cloak for microwaves [J]. Nature Materials, 2013, 12(1): 25–28. DOI: 10.1038/nmat3476.
|
[3] |
LI B, TAN K T, CHRISTENSEN J. Heat conduction tuning by hyperbranched nanophononic metamaterials [J]. Journal of Applied Physics, 2018, 123(20): 205105. DOI: 10.1063/1.5023487.
|
[4] |
LI B, TAN K T, CHRISTENSEN J. Tailoring the thermal conductivity in nanophononic metamaterials [J]. Physical Review B, 2017, 95(14): 144305. DOI: 10.1103/PhysRevB.95.144305.
|
[5] |
WANG Y Z, LI F M, WANG Y S. Influences of active control on elastic wave propagation in a weakly nonlinear phononic crystal with a monoatomic lattice chain [J]. International Journal of Mechanical Sciences, 2016, 106: 357–362. DOI: 10.1016/j.ijmecsci.2015.12.004.
|
[6] |
BANERJEE B, NAGY P B. An introduction to metamaterials and waves in composites [J]. Journal of the Acoustical Society of America, 2012, 131(2): 1665. DOI: 10.1121/1.3672699.
|
[7] |
AL BA'BA'A H B, NOUH M. Mechanics of longitudinal and flexural locally resonant elastic metamaterials using a structural power flow approach [J]. International Journal of Mechanical Sciences, 2017, 122: 341–354. DOI: 10.1016/j.ijmecsci.2017.01.034.
|
[8] |
LIU X N, HU G K, HUANG G L, et al. An elastic metamaterial with simultaneously negative mass density and bulk modulus [J]. Applied Physics Letters, 2011, 98(25): 251907. DOI: 10.1063/1.3597651.
|
[9] |
LI J, CHAN C T. Double-negative acoustic metamaterial [J]. Physical Review E, 2004, 70(5): 055602(R). DOI: 10.1103/PhysRevE.70.055602.
|
[10] |
LIU Z Y, ZHANG X X, MAO Y W, et al. Locally resonant sonic materials [J]. Science, 2000, 289(5485): 1734–1736. DOI: 10.1126/science.289.5485.1734.
|
[11] |
LIU Z Y, CHAN C T, SHENG P, et al. Elastic wave scattering by periodic structures of spherical objects: theory and experiment [J]. Physical Review B, 2000, 62(4): 2446–2457. DOI: 10.1103/PhysRevB.62.2446.
|
[12] |
LIU Z Y, CHAN C T, SHENG P. Three-component elastic wave band-gap material [J]. Physical Review B, 2002, 65(16): 165116. DOI: 10.1103/PhysRevB.65.165116.
|
[13] |
LIU Z Y, CHAN C T, SHENG P. Analytic model of phononic crystals with local resonances [J]. Physical Review B, 2005, 71(1): 014103. DOI: 10.1103/PhysRevB.71.014103.
|
[14] |
YANG Z, DAI H M, CHAN N H, et al. Acoustic metamaterial panels for sound attenuation in the 50−1 000 Hz regime [J]. Applied Physics Letters, 2010, 96(4): 041906. DOI: 10.1063/1.3299007.
|
[15] |
YANG Z, MEI J, YANG M, et al. Membrane-type acoustic metamaterial with negative dynamic mass [J]. Physical Review Letters, 2008, 101(20): 204301. DOI: 10.1103/PhysRevLett.101.204301.
|
[16] |
吴健, 白晓春, 肖勇, 等. 一种多频局域共振型声子晶体板的低频带隙与减振特性 [J]. 物理学报, 2016, 65(6): 064602. DOI: 10.7498/aps.65.064602.
WU J, BAI X C, XIAO Y, et al. Low frequency band gaps and vibration reduction properties of a multi-frequency locally resonant phononic plate [J]. Acta Physica Sinica, 2016, 65(6): 064602. DOI: 10.7498/aps.65.064602.
|
[17] |
张印, 尹剑飞, 温激鸿, 等. 基于质量放大局域共振型声子晶体的低频减振设计 [J]. 振动与冲击, 2016, 35(17): 26–32. DOI: 10.13465/j.cnki.jvs.2016.17.005.
ZHANG Y, YIN J F, WEN J H, et al. Low frequency vibration reduction design for inertial local resonance phononic crystals based on inertial amplification [J]. Journal of Vibration and Shock, 2016, 35(17): 26–32. DOI: 10.13465/j.cnki.jvs.2016.17.005.
|
[18] |
BRÛLÉ S, JAVELAUD E H, ENOCH S, et al. Experiments on seismic metamaterials: molding surface waves [J]. Physical Review Letters, 2014, 112(13): 133901. DOI: 10.1103/PhysRevLett.112.133901.
|
[19] |
郜英杰, 范华林, 张蓓, 等. 超材料消波混凝土板在二维平面波作用下的削波效应研究 [J]. 振动与冲击, 2018, 37(20): 39–44. DOI: 10.13465/j.cnki.jvs.2016.17.005.
GAO Y J, FAN H L, ZHANG B, et al. Wave attenuation of super-material wave absorbing concrete panel subjected to two-dimensional plane wave [J]. Journal of Vibration and Shock, 2018, 37(20): 39–44. DOI: 10.13465/j.cnki.jvs.2016.17.005.
|
[20] |
LI Q Q, HE Z C, LI E, et al. Design of a multi-resonator metamaterial for mitigating impact force [J]. Journal of Applied Physics, 2019, 125(3): 035104. DOI: 10.1063/1.5029946.
|
[21] |
HUANG H H, SUN C T, HUANG G L. On the negative effective mass density in acoustic metamaterials [J]. International Journal of Engineering Science, 2009, 47(4): 610–617. DOI: 10.1016/j.ijengsci.2008.12.007.
|
[22] |
SHENG X, ZHAO C Y, YI Q, et al. Engineered metabarrier as shield from longitudinal waves: band gap properties and optimization mechanisms [J]. Journal of Zhejiang University: Science A: Applied Physics and Engineering, 2018, 19(9): 663–675. DOI: 10.1631/jzus.A1700192.
|
[23] |
MITCHELL S J, PANDOLFI A, ORTIZ M. Metaconcrete: designed aggregates to enhance dynamic performance [J]. Journal of the Mechanics and Physics of Solids, 2014, 65: 69–81. DOI: 10.1016/j.jmps.2014.01.003.
|