Volume 40 Issue 5
May  2020
Turn off MathJax
Article Contents
WU Yishun, CHEN Xiaowei. A numerical simulation method for long rods penetrating into ceramic targets[J]. Explosion And Shock Waves, 2020, 40(5): 053301. doi: 10.11883/bzycj-2019-0291
Citation: WU Yishun, CHEN Xiaowei. A numerical simulation method for long rods penetrating into ceramic targets[J]. Explosion And Shock Waves, 2020, 40(5): 053301. doi: 10.11883/bzycj-2019-0291

A numerical simulation method for long rods penetrating into ceramic targets

doi: 10.11883/bzycj-2019-0291
  • Received Date: 2019-07-23
  • Rev Recd Date: 2019-11-21
  • Publish Date: 2020-05-01
  • Ceramics are widely used in armors because of high strength, low density and excellent ballistic performance. When long rods impact the ceramics, the long rods will flow radially along the ceramic surfaces without significant penetration. The special phenomenon is called interface defeat which has important practice application in the anti-penetration performance. For the long rods impacting the ceramic targets, a two-dimensional axisymmetric numerical model in which both the Lagrange method and smooth particle hydrodynamics (SPH) method are used, is established by using the software AUTODYN. The established model is applied to simulate the penetration of the long rod into the silicon carbide ceramic with a cover plate. By changing the impact velocity of the long rod, three different phenomena are obtained including interface defeat, dwell to penetration and direct penetration. Through the verification of mesh convergence and the comparison of the numerical results to the experimental results, the reliability of the algorithm, boundary conditions and parameter settings in the numerical model is comprehensively verified. The simulated results show that if the SPH and Lagrange methods are used at the same time, the influences of particle and mesh sizes need to be considered. It is not recommended to use the SPH method for simulating the interface defeat of the ceramic targets. The methods of the modeling and parameter selections are helpful for the subsequent simulations on ceramic anti-penetration and interface defeat.
  • loading
  • [1]
    焦文俊, 陈小伟. 长杆高速侵彻问题研究进展 [J]. 力学进展, 2019, 49(1): 312–391. DOI: 10.6052/1000-0992-17-021.

    JIAO W J, CHEN X W. Review on long-rod penetration at hypervelocity [J]. Advances in Mechanics, 2019, 49(1): 312–391. DOI: 10.6052/1000-0992-17-021.
    [2]
    WIKINS W L. Second progress report of light armor program: UCRL-50349 [R]. Livermore, CA, USA: Livermore National Laboratory, 1964.
    [3]
    HAUVER G, GOOCH W, NETHERWOOD P, et al. Variation of target resistance during long-rod penetration into ceramics [C] // The 13th International Symposium on Ballistics. Sundyberg, Sweden, 1992: 257−264.
    [4]
    ROSEBERG Z, TSALIAH J. Applying Tate's model for the interaction of long rod projectiles with ceramic targets [J]. International Journal of Impact Engineering, 1990, 9(2): 247–251. DOI: 10.1016/0734-743X(90)90016-O.
    [5]
    ANDERSON Jr C E, WALKER J D. An analytical model for dwell and interface defeat [J]. International Journal of Impact Engineering, 2005, 31(9): 1119–1132. DOI: 10.1016/j.ijimpeng.2004.07.013.
    [6]
    LUNDBERG P, RENSTRÖM R, LUNDBERG B. Impact of metallic projectiles on ceramic targets: transition between interface defeat and penetration [J]. International Journal of Impact Engineering, 2000, 24(3): 259–275. DOI: 10.1016/S0734-743X(99)00152-9.
    [7]
    LUNDBERG P, LUNDBERG B. Transition between interface defeat and penetration for tungsten projectiles and four silicon carbide materials [J]. International Journal of Impact Engineering, 2005, 31(7): 781–792. DOI: 10.1016/j.ijimpeng.2004.06.003.
    [8]
    LUNDBERG P, RENSTRÖM R, LUNDBERG B. Impact of conical tungsten projectiles on flat silicon carbide targets: transition from interface defeat to penetration [J]. International Journal of Impact Engineering, 2006, 32(11): 1842–1856. DOI: 10.1016/j.ijimpeng.2005.04.004.
    [9]
    LUNDBERG P, RENSTRÖM R, ANDERSSON O. Influence of length scale on the transition from interface defeat to penetration in unconfined ceramic targets [J]. Journal of Applied Mechanics, 2013, 80(3): 979–985. DOI: 10.1115/1.4023345.
    [10]
    LUNDBERG P, RENSTRÖM R, ANDERSSON O. Influence of confining prestress on the transition from interface defeat to penetration in ceramic targets [J]. Defence Technology, 2016, 12(3): 263–271. DOI: 10.1016/j.dt.2016.02.002.
    [11]
    BEHNER T, ANDERSON Jr C E, HOLMQUIST T J, et al. Interface defeat for unconfined SiC ceramics [C] // The 24th International Symposium on Ballistics. New Orleans, 2008: 298−306.
    [12]
    BEHNER T, ANDERSON Jr C E, HOLMQUIST T J, et al. Penetration dynamics and interface defeat capability of silicon carbide against long Rod impact [J]. International Journal of Impact Engineering, 2011, 38(6): 419–425. DOI: 10.1016/j.ijimpeng.2010.10.011.
    [13]
    ANDERSON Jr C E, BEHNER T, HOLMQUIST T J, et al. Interface defeat of long rods impacting oblique silicon carbide [C] // The 26th International Symposium on Ballistics. Miami, Fl, USA, 2011, 81(6): 1728−1735. DOI: 10.1007/978-3-642-19665-2_4.
    [14]
    LI J C, CHEN X W, NING F, et al. On the transition from interface defeat to penetration in the impact of long rod onto ceramic targets [J]. International Journal of Impact Engineering, 2015, 83(8): 37–46. DOI: 10.1016/j.ijimpeng.2015.04.003.
    [15]
    LI J C, CHEN X W, NING F. Comparative analysis on the interface defeat between the cylindrical and conical-nosed long rods [J]. International Journal of Protective Structures, 2014, 5(1): 21–46. DOI: 10.1260/2041-4196.5.1.21.
    [16]
    LI J C, CHEN X W. Theoretical analysis of projectile-target interface defeat and transition to penetration by long rods due to oblique impacts of ceramic targets [J]. International Journal of Impact Engineering, 2017, 106(10): 53–63. DOI: 10.1016/j.ijimpeng.2017.03.013.
    [17]
    谈梦婷, 张先锋, 何勇, 等. 长杆弹撞击装甲陶瓷的界面击溃效应数值模拟 [J]. 兵工学报, 2016, 37(4): 627–634. DOI: 10.3969/j.issn.1000-1093.2016.04.008.

    TAN M T, ZHANG X F, HE Y, et al. Numerical simulation on interface defeat of ceramic armor impacted by long-rod projectile [J]. Acta Armamentarii, 2016, 37(4): 627–634. DOI: 10.3969/j.issn.1000-1093.2016.04.008.
    [18]
    谈梦婷, 张先锋, 包阔, 等. 装甲陶瓷的界面击溃效应 [J]. 力学进展, 2019, 49(1): 65–71. DOI: 10.6052/1000-0992-17-015.

    TAN M T, ZHANG X F, BAO K, et al. Interface defeat of ceramic armor [J]. Advances in Mechanics, 2019, 49(1): 65–71. DOI: 10.6052/1000-0992-17-015.
    [19]
    HOLMQUIST T J, JOHNSON G R. Response of silicon carbide to high velocity impact [J]. Journal of Applied Physics, 2002, 91(9): 5858–5866. DOI: 10.1063/1.1468903.
    [20]
    QUAN X, CLEGG R A, COWLER M S, et al. Numerical simulation of long rods impacting silicon carbide targets using JH-1 model [J]. International Journal of Impact Engineering, 2006, 33(1): 634–644. DOI: 10.1016/j.ijimpeng.2006.09.011.
    [21]
    GOH W L, ZHENG Y, YUAN J, et al. Effects of hardness of steel on ceramic armor module against long rod impact [J]. International Journal of Impact Engineering, 2017, 109(11): 419–426. DOI: 10.1016/j.ijimpeng.2017.08.004.
    [22]
    CHI R Q, SERJOUEI A, SRIDHAR I, et al. Pre-stress effect on confined ceramic armor ballistic performance [J]. International Journal of Impact Engineering, 2015, 84(8): 159–170. DOI: 10.1016/j.ijimpeng.2015.05.011.
    [23]
    JOHNSON G R, HOLMQUIST T J. An improved computational constitutive model for brittle materials [C] // AIP Conference Proceedings. USA: American Institute of Physics, 1994, 309(1): 981−984. DOI: 10.1063/1.46199.
    [24]
    JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C] // 7th International Symposium on Ballistics. The Hague, Netherlands, 1983: 541−547.
    [25]
    JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures, and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
    [26]
    郎林, 陈小伟, 雷劲松. 长杆和分段杆侵彻的数值模拟 [J]. 爆炸与冲击, 2011, 31(2): 127–134. DOI: 10.11883/1001-1455(2011)02-0127-08.

    LANG L, CHEN X W, LEI J S. Numerical simulations on long rods and segmented rods penetrating into steel target [J]. Explosion and Shock Waves, 2011, 31(2): 127–134. DOI: 10.11883/1001-1455(2011)02-0127-08.
    [27]
    LEE J K. Analysis of multi-layered materials under high velocity impact using CTH [D]. Ohio: Air Force Institute of Technology, 2008: 32−33.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(5)

    Article Metrics

    Article views (6141) PDF downloads(144) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return