Citation: | WU Yishun, CHEN Xiaowei. A numerical simulation method for long rods penetrating into ceramic targets[J]. Explosion And Shock Waves, 2020, 40(5): 053301. doi: 10.11883/bzycj-2019-0291 |
[1] |
焦文俊, 陈小伟. 长杆高速侵彻问题研究进展 [J]. 力学进展, 2019, 49(1): 312–391. DOI: 10.6052/1000-0992-17-021.
JIAO W J, CHEN X W. Review on long-rod penetration at hypervelocity [J]. Advances in Mechanics, 2019, 49(1): 312–391. DOI: 10.6052/1000-0992-17-021.
|
[2] |
WIKINS W L. Second progress report of light armor program: UCRL-50349 [R]. Livermore, CA, USA: Livermore National Laboratory, 1964.
|
[3] |
HAUVER G, GOOCH W, NETHERWOOD P, et al. Variation of target resistance during long-rod penetration into ceramics [C] // The 13th International Symposium on Ballistics. Sundyberg, Sweden, 1992: 257−264.
|
[4] |
ROSEBERG Z, TSALIAH J. Applying Tate's model for the interaction of long rod projectiles with ceramic targets [J]. International Journal of Impact Engineering, 1990, 9(2): 247–251. DOI: 10.1016/0734-743X(90)90016-O.
|
[5] |
ANDERSON Jr C E, WALKER J D. An analytical model for dwell and interface defeat [J]. International Journal of Impact Engineering, 2005, 31(9): 1119–1132. DOI: 10.1016/j.ijimpeng.2004.07.013.
|
[6] |
LUNDBERG P, RENSTRÖM R, LUNDBERG B. Impact of metallic projectiles on ceramic targets: transition between interface defeat and penetration [J]. International Journal of Impact Engineering, 2000, 24(3): 259–275. DOI: 10.1016/S0734-743X(99)00152-9.
|
[7] |
LUNDBERG P, LUNDBERG B. Transition between interface defeat and penetration for tungsten projectiles and four silicon carbide materials [J]. International Journal of Impact Engineering, 2005, 31(7): 781–792. DOI: 10.1016/j.ijimpeng.2004.06.003.
|
[8] |
LUNDBERG P, RENSTRÖM R, LUNDBERG B. Impact of conical tungsten projectiles on flat silicon carbide targets: transition from interface defeat to penetration [J]. International Journal of Impact Engineering, 2006, 32(11): 1842–1856. DOI: 10.1016/j.ijimpeng.2005.04.004.
|
[9] |
LUNDBERG P, RENSTRÖM R, ANDERSSON O. Influence of length scale on the transition from interface defeat to penetration in unconfined ceramic targets [J]. Journal of Applied Mechanics, 2013, 80(3): 979–985. DOI: 10.1115/1.4023345.
|
[10] |
LUNDBERG P, RENSTRÖM R, ANDERSSON O. Influence of confining prestress on the transition from interface defeat to penetration in ceramic targets [J]. Defence Technology, 2016, 12(3): 263–271. DOI: 10.1016/j.dt.2016.02.002.
|
[11] |
BEHNER T, ANDERSON Jr C E, HOLMQUIST T J, et al. Interface defeat for unconfined SiC ceramics [C] // The 24th International Symposium on Ballistics. New Orleans, 2008: 298−306.
|
[12] |
BEHNER T, ANDERSON Jr C E, HOLMQUIST T J, et al. Penetration dynamics and interface defeat capability of silicon carbide against long Rod impact [J]. International Journal of Impact Engineering, 2011, 38(6): 419–425. DOI: 10.1016/j.ijimpeng.2010.10.011.
|
[13] |
ANDERSON Jr C E, BEHNER T, HOLMQUIST T J, et al. Interface defeat of long rods impacting oblique silicon carbide [C] // The 26th International Symposium on Ballistics. Miami, Fl, USA, 2011, 81(6): 1728−1735. DOI: 10.1007/978-3-642-19665-2_4.
|
[14] |
LI J C, CHEN X W, NING F, et al. On the transition from interface defeat to penetration in the impact of long rod onto ceramic targets [J]. International Journal of Impact Engineering, 2015, 83(8): 37–46. DOI: 10.1016/j.ijimpeng.2015.04.003.
|
[15] |
LI J C, CHEN X W, NING F. Comparative analysis on the interface defeat between the cylindrical and conical-nosed long rods [J]. International Journal of Protective Structures, 2014, 5(1): 21–46. DOI: 10.1260/2041-4196.5.1.21.
|
[16] |
LI J C, CHEN X W. Theoretical analysis of projectile-target interface defeat and transition to penetration by long rods due to oblique impacts of ceramic targets [J]. International Journal of Impact Engineering, 2017, 106(10): 53–63. DOI: 10.1016/j.ijimpeng.2017.03.013.
|
[17] |
谈梦婷, 张先锋, 何勇, 等. 长杆弹撞击装甲陶瓷的界面击溃效应数值模拟 [J]. 兵工学报, 2016, 37(4): 627–634. DOI: 10.3969/j.issn.1000-1093.2016.04.008.
TAN M T, ZHANG X F, HE Y, et al. Numerical simulation on interface defeat of ceramic armor impacted by long-rod projectile [J]. Acta Armamentarii, 2016, 37(4): 627–634. DOI: 10.3969/j.issn.1000-1093.2016.04.008.
|
[18] |
谈梦婷, 张先锋, 包阔, 等. 装甲陶瓷的界面击溃效应 [J]. 力学进展, 2019, 49(1): 65–71. DOI: 10.6052/1000-0992-17-015.
TAN M T, ZHANG X F, BAO K, et al. Interface defeat of ceramic armor [J]. Advances in Mechanics, 2019, 49(1): 65–71. DOI: 10.6052/1000-0992-17-015.
|
[19] |
HOLMQUIST T J, JOHNSON G R. Response of silicon carbide to high velocity impact [J]. Journal of Applied Physics, 2002, 91(9): 5858–5866. DOI: 10.1063/1.1468903.
|
[20] |
QUAN X, CLEGG R A, COWLER M S, et al. Numerical simulation of long rods impacting silicon carbide targets using JH-1 model [J]. International Journal of Impact Engineering, 2006, 33(1): 634–644. DOI: 10.1016/j.ijimpeng.2006.09.011.
|
[21] |
GOH W L, ZHENG Y, YUAN J, et al. Effects of hardness of steel on ceramic armor module against long rod impact [J]. International Journal of Impact Engineering, 2017, 109(11): 419–426. DOI: 10.1016/j.ijimpeng.2017.08.004.
|
[22] |
CHI R Q, SERJOUEI A, SRIDHAR I, et al. Pre-stress effect on confined ceramic armor ballistic performance [J]. International Journal of Impact Engineering, 2015, 84(8): 159–170. DOI: 10.1016/j.ijimpeng.2015.05.011.
|
[23] |
JOHNSON G R, HOLMQUIST T J. An improved computational constitutive model for brittle materials [C] // AIP Conference Proceedings. USA: American Institute of Physics, 1994, 309(1): 981−984. DOI: 10.1063/1.46199.
|
[24] |
JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C] // 7th International Symposium on Ballistics. The Hague, Netherlands, 1983: 541−547.
|
[25] |
JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures, and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
|
[26] |
郎林, 陈小伟, 雷劲松. 长杆和分段杆侵彻的数值模拟 [J]. 爆炸与冲击, 2011, 31(2): 127–134. DOI: 10.11883/1001-1455(2011)02-0127-08.
LANG L, CHEN X W, LEI J S. Numerical simulations on long rods and segmented rods penetrating into steel target [J]. Explosion and Shock Waves, 2011, 31(2): 127–134. DOI: 10.11883/1001-1455(2011)02-0127-08.
|
[27] |
LEE J K. Analysis of multi-layered materials under high velocity impact using CTH [D]. Ohio: Air Force Institute of Technology, 2008: 32−33.
|