Volume 40 Issue 7
Jul.  2020
Turn off MathJax
Article Contents
CHENG Shuai, SHI Yingju, YIN Wenjun, LIU Wenxiang, TANG Shiying, ZHANG Dezhi. Influence of aluminum foam lining on deformation of steel cylinders subjected to internal blast loading[J]. Explosion And Shock Waves, 2020, 40(7): 071406. doi: 10.11883/bzycj-2019-0339
Citation: CHENG Shuai, SHI Yingju, YIN Wenjun, LIU Wenxiang, TANG Shiying, ZHANG Dezhi. Influence of aluminum foam lining on deformation of steel cylinders subjected to internal blast loading[J]. Explosion And Shock Waves, 2020, 40(7): 071406. doi: 10.11883/bzycj-2019-0339

Influence of aluminum foam lining on deformation of steel cylinders subjected to internal blast loading

doi: 10.11883/bzycj-2019-0339
  • Received Date: 2019-09-03
  • Rev Recd Date: 2020-05-13
  • Publish Date: 2020-07-01
  • In order to improve the anti-explosion ability of steel cylinders subjected to internal blast loading, the effect of aluminum foam lining on the deformation of the steel cylinders was explored. First of all, contrast experiments displayed that under the experimental conditions in this paper, the steel cylinders deformed more greatly due to foam aluminum lining, and some were even seriously damaged. Then the finite element models were established to study the change mechanism and law of the deformation of the steel cylinders with the equivalent of explosion and the thickness of aluminum foam lining. The results show that the aluminum foam lining with enough thickness will reduce the deformation of the steel cylinders, however, if the thickness of the aluminum foam lining is insufficient, there may be an opposite effect. For the aluminum-foam lined steel cylinder with a fixed size, the effect of aluminum foam lining on the plastic deformation of the steel cylinder mainly includes three modes as the explosive equivalent increases. In mode 1, the aluminum foam will absorb explosive loading through plastic deformation, thus reducing the deformation of the steel cylinder. In mode 2, the steel cylinder endures higher load and suffers larger plastic deformation due to adding the foam aluminum lining. For mode 3, the effect of the aluminum foam on the explosive loading can be ignored, and the aluminum foam decreases the plastic deformation of the steel cylinder by increasing the total mass of the structure.
  • loading
  • [1]
    任新见, 李广新, 张胜民. 泡沫铝夹心排爆罐抗爆性能试验研究 [J]. 振动与冲击, 2011, 30(5): 213–217. DOI: 10.3969/j.issn.1000-3835.2011.05.044.

    REN X J, LI G X, ZHANG S M. Antidetonation property tests for explosion-proof pots made of sandwich structure with aluminium foam [J]. Journal of Vibration and Shock, 2011, 30(5): 213–217. DOI: 10.3969/j.issn.1000-3835.2011.05.044.
    [2]
    刘新让, 田晓耕, 卢天健, 等. 泡沫铝夹芯圆筒抗爆性能研究 [J]. 振动与冲击, 2012, 31(23): 166–173. DOI: 10.3969/j.issn.1000-3835.2012.23.031.

    LIU X R, TIAN X G, LU T J, et al. Blast-resistance behaviors of sandwich-walled hollow cylinders with aluminum foam cores [J]. Journal of Vibration and Shock, 2012, 31(23): 166–173. DOI: 10.3969/j.issn.1000-3835.2012.23.031.
    [3]
    GOEL M D, MATSAGAR V A, GUPTA A K. Blast resistance of stiffened sandwich panels with aluminum cenosphere syntactic foam [J]. International Journal of Impact Engineering, 2015, 77: 134–146. DOI: 10.1016/j.ijimpeng.2014.11.017.
    [4]
    SANTOSA S P, ARIFURRAHMAN F, IZZUDIN M H, et al. Response analysis of blast impact loading of metal-foam sandwich panels [J]. Procedia Engineering, 2017, 173: 495–502. DOI: 10.1016/j.proeng.2016.12.073.
    [5]
    张培文, 李鑫, 王志华, 等. 爆炸载荷作用下不同面板厚度对泡沫铝夹芯板动力响应的影响 [J]. 高压物理学报, 2013, 27(5): 699–703. DOI: 10.11858/gywlxb.2013.05.007.

    ZHANG P W, LI X, WANG Z H, et al. Effect of face sheet thickness on dynamic response of aluminum foam sandwich panels under blast loading [J]. Chinese Journal of High Pressure Physics, 2013, 27(5): 699–703. DOI: 10.11858/gywlxb.2013.05.007.
    [6]
    王涛, 余文力, 秦庆华, 等. 爆炸载荷下泡沫铝夹芯板变形与破坏模式的实验研究 [J]. 兵工学报, 2016, 37(8): 1456–1463. DOI: 10.3969/j.issn.1000-1093.2016.08.017.

    WANG T, YU W L, QIN Q H, et al. Experimental investigation into deformation and damage patterns of sandwich plates with aluminum foam core subjected to blast loading [J]. Acta Armamentarii, 2016, 37(8): 1456–1463. DOI: 10.3969/j.issn.1000-1093.2016.08.017.
    [7]
    周佩杰, 王坚, 陶钢, 等. 泡沫材料对冲击波的衰减特性 [J]. 爆炸与冲击, 2015, 35(5): 675–681. DOI: 10.11883/1001-1455(2015)05-0675-07.

    ZHOU P J, WANG J, TAO G, et al. Attenuation characteristics of shock waves interacting with open and closed foams [J]. Explosion and Shock Waves, 2015, 35(5): 675–681. DOI: 10.11883/1001-1455(2015)05-0675-07.
    [8]
    SKEWS B W, ATKINS M D, SEITZ M W. The impact of a shock wave on porous compressible foams [J]. Journal of Fluid Mechanics, 1993, 253: 245–265. DOI: 10.1017/S0022112093001788.
    [9]
    LI Q M, MENG H. Attenuation or enhancement: a one-dimensional analysis on shock transmission in the solid phase of a cellular material [J]. International Journal of Impact Engineering, 2002, 27(10): 1049–1065. DOI: 10.1016/S0734-743X(02)00016-7.
    [10]
    TAN P J, REID S R, HARRIGAN J J, et al. Dynamic compressive strength properties of aluminium foams: Part Ⅰ: experimental data and observations [J]. Journal of the Mechanics and Physics of Solids, 2005, 53(10): 2174–2205. DOI: 10.1016/j.jmps.2005.05.007.
    [11]
    TAN P J, REID S R, HARRIGAN J J, et al. Dynamic compressive strength properties of aluminium foams: Part Ⅱ: ‘shock’ theory and comparison with experimental data and numerical models [J]. Journal of the Mechanics and Physics of Solids, 2005, 53(10): 2206–2230. DOI: 10.1016/j.jmps.2005.05.003.
    [12]
    LOPATNIKOV S L, GAMA B A, HAQUE J, et al. Dynamics of metal foam deformation during Taylor cylinder-Hopkinson bar impact experiment [J]. Composite Structures, 2003, 61(1−2): 61–71.
    [13]
    HARRIGAN J J, REID S R, YAGHOUBI A S. The correct analysis of shocks in a cellular material [J]. International Journal of Impact Engineering, 2010, 37(8): 918–927. DOI: 10.1016/j.ijimpeng.2009.03.011.
    [14]
    ALEYAASIN M, HARRIGAN J J, REID S R. Air-blast response of cellular material with a face plate: an analytical-numerical approach [J]. International Journal of Mechanical Sciences, 2015, 91: 64–70. DOI: 10.1016/j.ijmecsci.2014.03.027.
    [15]
    秦学军, 张德志, 杨军, 等. 内部爆炸作用下钢筒塑性变形研究 [J]. 兵工学报, 2014, 35(S2): 135−138.

    QIN X J, ZHANG D Z, YANG J, et al. Research on plastic deformation of cylindrical steel shells under internal explosion loading [J]. Acta Armamentarii, 2014, 35(S2): 135−138.
    [16]
    张德志. 柱形爆炸容器载荷与塑形结构响应研究 [D]. 西安: 西北核技术研究所, 2012: 66−68.

    ZHANG D Z. Investigation on load and plastic structure response of cylindrical explosion vessel [D]. Xi’an: Northwest Institute of Nuclear Technology, 2012: 66−68.
    [17]
    杨军, 王克逸, 徐海斌, 等. 光纤位移干涉仪的研制及其在Hopkinson压杆实验中的应用 [J]. 红外与激光工程, 2013, 42(1): 102–107. DOI: 10.3969/j.issn.1007-2276.2013.01.019.

    YANG J, WANG K Y, XU H B, et al. Development of an optical-fiber displacement interferometer and its application in Hopkinson pressure bar experiment [J]. Infrared and Laser Engineering, 2013, 42(1): 102–107. DOI: 10.3969/j.issn.1007-2276.2013.01.019.
    [18]
    杨军, 李焰, 张德志, 等. 光子多普勒测速仪与压杆相结合的冲击波反射压力测试技术 [J]. 兵工学报, 2017, 38(7): 1368–1374. DOI: 10.3969/j.issn.1000-1093.2017.07.015.

    YANG J, LI Y, ZHANG D Z, et al. Measuring technique of reflected blast wave pressure based on pressure bar and Photonic Doppler Velocimeter [J]. Acta Armamentarii, 2017, 38(7): 1368–1374. DOI: 10.3969/j.issn.1000-1093.2017.07.015.
    [19]
    刘文祥, 张庆明, 钟方平, 等. 球壳塑性变形下的应变增长现象 [J]. 爆炸与冲击, 2017, 37(5): 893–898. DOI: 10.11883/1001-1455(2017)05-0893-06.

    LIU W X, ZHANG Q M, ZHONG F P, et al. Strain growth of spherical shell subjected to internal blast loading during plastic response [J]. Explosion and Shock Waves, 2017, 37(5): 893–898. DOI: 10.11883/1001-1455(2017)05-0893-06.
    [20]
    闻邦椿. 机械设计手册: 第一卷[M]. 5版. 北京: 机械工业出版社, 2011: 2−39.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (4908) PDF downloads(81) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return