Volume 40 Issue 5
May  2020
Turn off MathJax
Article Contents
ZHANG Na, ZHOU Jian, XU Mingfeng, LI Hui, MA Guowei. Dynamic mechanical properties of basalt fiber engineered cementitious composites[J]. Explosion And Shock Waves, 2020, 40(5): 053101. doi: 10.11883/bzycj-2019-0351
Citation: ZHANG Na, ZHOU Jian, XU Mingfeng, LI Hui, MA Guowei. Dynamic mechanical properties of basalt fiber engineered cementitious composites[J]. Explosion And Shock Waves, 2020, 40(5): 053101. doi: 10.11883/bzycj-2019-0351

Dynamic mechanical properties of basalt fiber engineered cementitious composites

doi: 10.11883/bzycj-2019-0351
  • Received Date: 2019-09-11
  • Rev Recd Date: 2019-12-11
  • Available Online: 2020-03-25
  • Publish Date: 2020-05-01
  • Basalt fiber engineered cementitious composites (BF-ECCs) were prepared by using a certain ratio of basalt fiber and cement-based material. The prepared material showed multiple cracks in static tensile test and its tensile strain was above 0.5%. For the cementitious composites with different basalt fiber contents, dynamic compression and dynamic splitting tests were carried out by using a split Hopkinson pressure bar (SHPB) device. The results show the followings. (1) Both the static and dynamic strengths are enhanced under compression and tension conditions by basalt fiber. At high strain rates, the dynamic increase in compressive strength is small, and the dynamic increase in the splitting strength is large. (2) The compressive and splitting strengths of the BF-ECCs increase significantly with increasing strain rate, both of which can use a dynamic increase factor (DIF) to reflect the increase in dynamic strength, but the strain rate sensitivity of the splitting strength is stronger than that of the compressive strength. (3) According to the test, the CEB-FIP equation (2010) of ordinary cement concrete rate sensitivity is not applicable to the BF-ECCs.
  • loading
  • [1]
    LI V C, LEUNG C K Y. Steady-state and multiple cracking of short random fiber composites [J]. Journal of Engineering Mechanics, 1992, 118(11): 2246–2264. DOI: 10.1061/(ASCE)0733-9399(1992)118:11(2246).
    [2]
    MAALEJ M, LI V C. Flexural/tensile-strength ratio in engineered cementitious composites [J]. Journal of Materials in Civil Engineering, 1994, 6(4): 513–528. DOI: 10.1061/(ASCE)0899-1561(1994)6:4(513).
    [3]
    徐世烺, 李庆华. 超高韧性水泥基复合材料在高性能建筑结构中的基本应用[M]. 北京: 科学出版社, 2010: 5−6.
    [4]
    徐世烺, 李贺东. 超高韧性水泥基复合材料研究进展及其工程应用 [J]. 土木工程学报, 2008, 41(6): 45–60. DOI: 10.3321/j.issn:1000-131X.2008.06.008.

    XU S L, LI H D. A review on the development of research and application of ultra high toughness cementitious composites [J]. China Civil Engineering Journal, 2008, 41(6): 45–60. DOI: 10.3321/j.issn:1000-131X.2008.06.008.
    [5]
    刘问. 超高韧性水泥基复合材料动态力学性能的试验研究[D]. 大连: 大连理工大学, 2011: 35−36.
    [6]
    YANG E H, LI V C. Rate dependence in engineered cementitious composites [C] // YANG E H, LI V C. International RILEM Workshop on High Performance Fiber Reinforced Cementitious Composites in Structural Applications. Honolulu, Hawaii, USA: RILEM Publications SARL, 2006: 83−92.
    [7]
    YANG E H, LI V C. Tailoring engineered cementitious composites for impact resistance [J]. Cement and Concrete Research, 2012, 42(8): 1066–1071. DOI: 10.1016/j.cemconres.2012.04.006.
    [8]
    MAALEJ M, QUEK S T, ZHANG J. Behaviour of hybrid-fiber engineered cementitious composites subjected to dynamic tensile loading and projectile impact [J]. Journal of Materials in Civil Engineering, 2005, 17(2): 143–152. DOI: 10.1061/(ASCE)0899-1561(2005)17:2(143).
    [9]
    ZHANG J, MAALEJ M, QUEK S T. Performance of hybrid-fiber ECC blast/shelter panels subjected to drop weight impact [J]. Journal of Materials in Civil Engineering, 2007, 19(10): 855–863. DOI: 10.1061/(ASCE)0899-1561(2007)19:10(855).
    [10]
    MECHTCHERINE V, MILLON O, BUTLE M, et al. Mechanical behaviour of strain hardening cement-based composites under impact loading [J]. Cement and Concrete Composites, 2011, 33(1): 1–11. DOI: 10.1016/j.cemconcomp.2010.09.018.
    [11]
    SOE K T, ZHANG Y X, ZHANG L C. Impact resistance of hybrid-fiber engineered cementitious composite panels [J]. Composite Structures, 2013, 104: 320–330. DOI: 10.1016/j.compstruct.2013.01.029.
    [12]
    LI V C, MISHRA D K, WU H C. Matrix design for Pseudo-strain-hardening fibre reinforced cementitious composites [J]. Materials and Structures, 1995, 28(10): 586–595. DOI: 10.1007/BF02473191.
    [13]
    LI V C, WANG S X, WU C. Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC) [J]. ACI Materials Journal, 2001, 98(6): 483–492.
    [14]
    ZHOU J, QIAN S Z, BELTRAN M G S., et al Development of engineered cementitious composites with limestone powder and blast furnace slag [J]. Materials and Structures, 2010, 43(6): 803–814. DOI: 10.1617/s11527-009-9549-0.
    [15]
    PAKRAVAN H R, JAMSHIDI M, LATIFI M. Study on fiber hybridization effect of engineered cementitious composites with low- and high-modulus polymeric fibers [J]. Construction and Building Materials, 2016, 112: 739–746. DOI: 10.1016/j.conbuildmat.2016.02.112.
    [16]
    成涛华, 李玉香. 玄武岩纤维增强混凝土力学性能研究 [J]. 混凝土与水泥制品, 2017(1): 53–56. DOI: 10.3969/j.issn.1000-4637.2017.01.012.

    CHEN T H, LI Y X. Study on mechanical performance of basalt fiber reinforced concrete [J]. China Concrete and Cement Products, 2017(1): 53–56. DOI: 10.3969/j.issn.1000-4637.2017.01.012.
    [17]
    葛浩军. 玄武岩纤维混凝土力学性能及耐久性研究[D]. 大连: 大连理工大学, 2019.
    [18]
    SUN X J, GAO Z, CAO P, et al. Mechanical properties tests and multiscale numerical simulations for basalt fiber reinforced concrete [J]. Construction and Building Materials, 2019, 202: 58–72. DOI: 10.1016/j.conbuildmat.2019.01.018.
    [19]
    李为民, 许金余. 玄武岩纤维混凝土的冲击力学行为及本构模型 [J]. 工程力学, 2009, 26(1): 86–91.

    LI W M, XU J Y. Dynamic behavior and constitutive model of basalt fiber reinforced concrete under impact loading [J]. Engineering Mechanics, 2009, 26(1): 86–91.
    [20]
    朱涵, 刘昂, 于泳. 低温下玄武岩纤维混凝土的抗冲击性能 [J]. 材料科学与工程学报, 2018, 36(4): 600–604.

    ZHU H, LIU A, YU Y. Low temperature impact performance of basalt fiber reinforced concrete [J]. Journal of Materials Science and Engineering, 2018, 36(4): 600–604.
    [21]
    ZHANG H, WANG B, XIE A Y, et al. Experimental study on dynamic mechanical properties and constitutive model of basalt fiber reinforced concrete [J]. Construction and Building Materials, 2017, 152: 154–167. DOI: 10.1016/j.conbuildmat.2017.06.177.
    [22]
    工业和信息化部. 高延性纤维增强水泥基复合材料力学性能试验方法: JC/T 2461-2018 [S]. 北京: 建材工业出版社, 2018.
    [23]
    CEB, FIP. FIB model code 2010 [S]. 2011.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(5)

    Article Metrics

    Article views (6223) PDF downloads(107) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return