Volume 40 Issue 5
May  2020
Turn off MathJax
Article Contents
YAN Lei, LIU Liansheng, LI Shijie, YANG Daoxue, LIU Wei. Damage evolution of weakly-weathered granite under uniaxial cyclic impact[J]. Explosion And Shock Waves, 2020, 40(5): 053303. doi: 10.11883/bzycj-2019-0354
Citation: YAN Lei, LIU Liansheng, LI Shijie, YANG Daoxue, LIU Wei. Damage evolution of weakly-weathered granite under uniaxial cyclic impact[J]. Explosion And Shock Waves, 2020, 40(5): 053303. doi: 10.11883/bzycj-2019-0354

Damage evolution of weakly-weathered granite under uniaxial cyclic impact

doi: 10.11883/bzycj-2019-0354
  • Received Date: 2019-09-15
  • Rev Recd Date: 2019-10-23
  • Available Online: 2020-04-25
  • Publish Date: 2020-05-01
  • In order to study the mechanical properties and damage evolution mechanism of weakly-weathered granite under blasting stress wave, single and constant-velocity cyclic impact tests on the granite specimens at different velocities were carried out using a modified split Hopkinson pressure bar (SHPB) with the diameter of 50 mm. The results show that the damage threshold determined by the energy method in single-impact tests can be used in the cyclic-impact tests. The stress relaxation platform exists in the crack propagation stage of the weakly-weathered granite at different strain rates, and it becomes more obvious with the increase of strain rate. The peak stress is positively correlated with strain rate. In the cyclic impact, the maximum stress and strain are positively correlated with the impact velocity, and negatively correlated with the total number of cumulative impacts; the damage evolution can be divided into three stages taking on an inverted-S shape, and a damage evolution model with two parameters is established by it. The fitting effect of the model is ideal and has physical significance; the damage degree at the median point and the relative number of cycles can be calculated by using the parameters α and β in the model, are positively correlated with the impact velocity. The damage evolution models described by different damage variables are different, so it is necessary to define the damage variables reasonably.
  • loading
  • [1]
    沈滔, 李海东, 靳杨, 等. 赣南地区花岗岩风化壳中稀土元素特征探讨 [J]. 稀土, 2016, 37(2): 62–67. DOI: 10.16533/J.CNKI.15-1099/TF.201602010.

    SHEN T, LI H D, JIN Y, et al. Discussion on the characteristics of rare earth elements from weathering crust of granites in south Jiangxi [J]. Chinese Rare Earths, 2016, 37(2): 62–67. DOI: 10.16533/J.CNKI.15-1099/TF.201602010.
    [2]
    LI H B, XIA X, LI J C, et al. Rock damage control in bedrock blasting excavation for a nuclear power plant [J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(2): 210–218. DOI: 10.1016/j.ijrmms.2010.11.016.
    [3]
    李地元, 孙小磊, 周子龙, 等. 多次冲击荷载作用下花岗岩动态累计损伤特性 [J]. 实验力学, 2016, 31(6): 827–835. DOI: 10.7520/1001-4888-16-009.

    LI D Y, SUN X L, ZHOU Z L, et al. On the dynamic accumulated damage characteristics of granite subjected to repeated impact load action [J]. Journal of Experimental Mechanics, 2016, 31(6): 827–835. DOI: 10.7520/1001-4888-16-009.
    [4]
    YAN L, YI W H, LIU L S, et al. Blasting-induced permeability enhancement of ore deposits associated with low-permeability weakly weathered granites based on the split Hopkinson pressure bar [J]. Geofluids, 2018, 2018: 4267878. DOI: 10.1155/2018/4267878.
    [5]
    ZHANG Q B, ZHAO J. A review of dynamic experimental techniques and mechanical behaviour of rock materials [J]. Rock Mechanics and Rock Engineering, 2014, 47(4): 1411–1478. DOI: 10.1007/s00603-013-0463-y.
    [6]
    金解放, 李夕兵, 殷志强, 等. 循环冲击下波阻抗定义岩石损伤变量的研究 [J]. 岩土力学, 2011, 32(5): 1385–1393; 1410. DOI: 10.3969/j.issn.1000-7598.2011.05.017.

    JIN J F, LI X B, YIN Z Q, et al. A method for defining rock damage variable by wave impedance under cyclic impact loadings [J]. Rock and Soil Mechanics, 2011, 32(5): 1385–1393; 1410. DOI: 10.3969/j.issn.1000-7598.2011.05.017.
    [7]
    金解放, 李夕兵, 王观石, 等. 循环冲击载荷作用下砂岩破坏模式及其机理 [J]. 中南大学学报(自然科学版), 2012, 43(4): 1453–1461.

    JIN J F, LI X B, WANG G S, et al. Failure modes and mechanisms of sandstone under cyclic impact loadings [J]. Journal of Central South University (Science and Technology), 2012, 43(4): 1453–1461.
    [8]
    金解放, 李夕兵, 邱灿, 等. 岩石循环冲击损伤演化模型及静载荷对损伤累积的影响 [J]. 岩石力学与工程学报, 2014, 33(8): 1662–1671. DOI: 10.13722/j.cnki.jrme.2014.08.017.

    JIN J F, LI X B, QIU C, et al. Evolution model for damage accumulation of rock under cyclic impact loadings and effect of static loads on damage evolution [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(8): 1662–1671. DOI: 10.13722/j.cnki.jrme.2014.08.017.
    [9]
    王春, 唐礼忠, 程露萍, 等. 三维高静载频繁动态扰动时岩石损伤特性及本构模型 [J]. 岩土力学, 2017, 38(8): 2286–2296; 2305. DOI: 10.16285/j.rsm.2017.08.017.

    WANG C, TANG L Z, CHENG L P, et al. Damage characteristics and constitutive model of rock under three-dimensional high static load and frequent dynamic disturbance [J]. Rock and Soil Mechanics, 2017, 38(8): 2286–2296; 2305. DOI: 10.16285/j.rsm.2017.08.017.
    [10]
    朱晶晶, 李夕兵, 宫凤强, 等. 单轴循环冲击下岩石的动力学特性及其损伤模型研究 [J]. 岩土工程学报, 2013, 35(3): 531–539.

    ZHU J J, LI X B, GONG F Q, et al. Dynamic characteristics and damage model for rock under uniaxial cyclic impact compressive loads [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 531–539.
    [11]
    LI S H, ZHU W C, NIU L L, et al. Dynamic characteristics of green sandstone subjected to repetitive impact loading: phenomena and mechanisms [J]. Rock Mechanics and Rock Engineering, 2018, 51(6): 1921–1936. DOI: 10.1007/s00603-018-1449-6.
    [12]
    王志亮, 杨辉, 田诺成. 单轴循环冲击下花岗岩力学特性与损伤演化机理 [J]. 哈尔滨工业大学学报, 2020, 52(2): 59–66. DOI: 10.11918/201811085.

    WANG Z L, YANG H, TIAN N C. Mechanical property and damage evolution mechanism of granite under uniaxial cyclic impact [J]. Journal of Harbin Institute of Technology, 2020, 52(2): 59–66. DOI: 10.11918/201811085.
    [13]
    DAI F, HUANG S, XIA K W, et al. Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar [J]. Rock Mechanics and Rock Engineering, 2010, 43(6): 657–666. DOI: 10.1007/s00603-010-0091-8.
    [14]
    LI X B, ZHOU Z L, LOK T S, et al. Innovative testing technique of rock subjected to coupled static and dynamic loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(5): 739–748. DOI: 10.1016/j.ijrmms.2007.08.013.
    [15]
    LI X B, LOK T S, ZHAO J, et al. Oscillation elimination in the Hopkinson bar apparatus and resultant complete dynamic stress-strain curves for rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(7): 1055–1060. DOI: 10.1016/S1365-1609(00)00037-X.
    [16]
    宋力, 胡时胜. SHPB数据处理中的二波法与三波法 [J]. 爆炸与冲击, 2005, 25(4): 368–373. DOI: 10.11883/1001-1455(2005)04-0368-06.

    SONG L, HU S S. Two-wave and three-wave method in SHPB data processing [J]. Explosion and Shock Waves, 2005, 25(4): 368–373. DOI: 10.11883/1001-1455(2005)04-0368-06.
    [17]
    王晓燕, 卢芳云, 林玉亮. SHPB实验中端面摩擦效应研究 [J]. 爆炸与冲击, 2006, 26(2): 134–139. DOI: 10.11883/1001-1455(2006)02-0134-06.

    WANG X Y, LU Y F, LING Y L. Study on interfacial friction effect in the SHPB tests [J]. Explosion and Shock Waves, 2006, 26(2): 134–139. DOI: 10.11883/1001-1455(2006)02-0134-06.
    [18]
    WANG P, YIN T B, LI X B, et al. Dynamic properties of thermally treated granite subjected to cyclic impact loading [J]. Rock Mechanics and Rock Engineering, 2019, 52(4): 991–1010. DOI: 10.1007/s00603-018-1606-y.
    [19]
    葛修润, 任建喜, 蒲毅彬, 等. 岩石疲劳损伤扩展规律CT细观分析初探 [J]. 岩土工程学报, 2001, 23(2): 191–195. DOI: 10.3321/j.issn:1000-4548.2001.02.013.

    GE X R, REN J X, PU Y B, et al. Primary study of CT real-time testing of fatigue meso-damage propagation law of rock [J]. Chinese Journal of Geotechnical Engineering, 2001, 23(2): 191–195. DOI: 10.3321/j.issn:1000-4548.2001.02.013.
    [20]
    王宇, 李晓, 武艳芳, 等. 脆性岩石起裂应力水平与脆性指标关系探讨 [J]. 岩石力学与工程学报, 2014, 33(2): 264–275. DOI: 10.13722/j.cnki.jrme.2014.02.003.

    WANG Y, LI X, WU Y F, et al. Research on relationship between crack initiation stress level and brittleness indices for brittle rocks [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(2): 264–275. DOI: 10.13722/j.cnki.jrme.2014.02.003.
    [21]
    梁昌玉, 李晓, 王声星, 等. 岩石单轴压缩应力-应变特征的率相关性及能量机制试验研究 [J]. 岩石力学与工程学报, 2012, 31(9): 1830–1838. DOI: 10.3969/j.issn.1000-6915.2012.09.014.

    LIANG C Y, LI X, WANG S X, et al. Experimental investigations on rate-dependent stress-strain characteristics and energy mechanism of rock under uniaixal compression [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(9): 1830–1838. DOI: 10.3969/j.issn.1000-6915.2012.09.014.
    [22]
    NICKSIAR M, MARTIN C D. Crack initiation stress in low porosity crystalline and sedimentary rocks [J]. Engineering Geology, 2013, 154: 64–76. DOI: 10.1016/j.enggeo.2012.12.007.
    [23]
    宫凤强, 王进, 李夕兵. 岩石压缩特性的率效应与动态增强因子统一模型 [J]. 岩石力学与工程学报, 2018, 37(7): 1586–1595. DOI: 10.13722/j.cnki.jrme.2017.1239.

    GONG F Q, WANG J, LI X B. The rate effect of compression characteristics and a unified model of dynamic increasing factor for rock materials [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(7): 1586–1595. DOI: 10.13722/j.cnki.jrme.2017.1239.
    [24]
    LI X B, LOK T S, ZHAO J. Dynamic characteristics of granite subjected to intermediate loading rate [J]. Rock Mechanics and Rock Engineering, 2005, 38(1): 21–39. DOI: 10.1007/s00603-004-0030-7.
    [25]
    李树刚, 陈高峰, 双海清, 等. 加载速率和初始损伤对砂岩能量演化影响的试验研究 [J]. 采矿与安全工程学报, 2019, 36(2): 373–380. DOI: 10.13545/j.cnki.jmse.2019.02.021.

    LI S G, CHEN G F, SHUANG H Q, et al. Experimental study on effect of loading rate and initial damage on energy evolution of sandstone [J]. Journal of Mining and Safety Engineering, 2019, 36(2): 373–380. DOI: 10.13545/j.cnki.jmse.2019.02.021.
    [26]
    文志杰, 田雷, 蒋宇静, 等. 基于应变能密度的非均质岩石损伤本构模型研究 [J]. 岩石力学与工程学报, 2019, 38(7): 1332–1343. DOI: 10.13722/j.cnki.jrme.2018.1125.

    WEN Z J, TIAN L, JIANG Y J, et al. Research on damage constitutive model of inhomogeneous rocks based on strain energy density [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(7): 1332–1343. DOI: 10.13722/j.cnki.jrme.2018.1125.
    [27]
    ZHANG J X, WONG T F, DAVIS D M. Micromechanics of pressure‐induced grain crushing in porous rocks [J]. Journal of Geophysical Research, 1990, 95(B1): 341–352. DOI: 10.1029/JB095iB01p00341.
    [28]
    XIAO J Q, DING D X, XU G, et al. Inverted S-shaped model for nonlinear fatigue damage of rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(3): 643–648. DOI: 10.1016/j.ijrmms.2008.11.002.
    [29]
    LIU Y, DAI F, DONG L, et al. Experimental investigation on the fatigue mechanical properties of intermittently jointed rock models under cyclic uniaxial compression with different loading parameters [J]. Rock Mechanics and Rock Engineering, 2018, 51(1): 47–68. DOI: 10.1007/s00603-017-1327-7.
    [30]
    XIAO J Q, DING D X, JIANG F L, et al. Fatigue damage variable and evolution of rock subjected to cyclic loading [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(3): 461–468. DOI: 10.1016/j.ijrmms.2009.11.003.
    [31]
    YAN L, LIU L S, ZHANG S H, et al. Testing of weakly weathered granites of different porosities using a split Hopkinson pressure bar technique [J]. Advances in Civil Engineering, 2018, 2018: 5267610.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (4828) PDF downloads(61) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return