Citation: | ZHANG Yunfeng, LUO Xingbai, LIU Guoqing, SHI Dongmei. Construction and application of the JH-2 model for a Zr-based bulk metallic glass alloy[J]. Explosion And Shock Waves, 2020, 40(7): 073101. doi: 10.11883/bzycj-2019-0377 |
[1] |
WEI H Y, YOO C S. Kinetics of small single particle combustion of zirconium alloy [J]. Journal of Applied Physics, 2012, 111(2): 023506. DOI: 10.1063/1.3677789.
|
[2] |
WEI H Y, YOO C S. Dynamic responses of reactive metallic structures under thermal and mechanical ignitions [J]. Journal of Materials Research, 2012, 27(21): 2705–2717. DOI: 10.1557/jmr.2012.302.
|
[3] |
CONNER R D, DANDLIKER R B, SCRUGGS V, et al. Dynamic deformation behavior of tungsten-fiber/metallic-glass matrix composites [J]. International Journal of Impact Engineering, 2000, 24(5): 435–444. DOI: 10.1016/S0734-743X(99)00176-1.
|
[4] |
RONG G, HUANG D W, YANG M C. Penetrating behaviors of Zr-based metallic glass composite rods reinforced by tungsten fibers [J]. Theoretical and Applied Fracture Mechanics, 2012, 58(1): 21–27. DOI: 10.1016/j.tafmec.2012.02.003.
|
[5] |
郑娜娜, 董素荣, 郭强, 等. 高塑性W-Cu-Zr非晶合金药型罩材料 [J]. 兵器材料科学与工程, 2014, 37(1): 94–96. DOI: 10.3969/j.issn.1004-244X.2014.01.034.
ZHENG N N, DONG S R, GUO Q, et al. High plasticity liner material of W-Cu-Zr amorphous alloy [J]. Ordnance Material Science and Engineering, 2014, 37(1): 94–96. DOI: 10.3969/j.issn.1004-244X.2014.01.034.
|
[6] |
WALTER W P, KECSKES L J, PRITCHETT J E. Investigation of a bulk metallic glass as a shaped charge liner material: ARL-TR-3864 [R]. Adelphi, MD, USA: Army Research Laboratory, 2006: 1−36.
|
[7] |
WANG C T, HE Y, JI C, et al. Investigation on shock-induced reaction characteristics of a Zr-based metallic glass [J]. Intermetallics, 2018, 93: 383–388. DOI: 10.1016/j.intermet.2017.11.004.
|
[8] |
LUO P G, WANG Z C, JIANG C L, et al. Experimental study on impact-initiated characters of W/Zr energetic fragments [J]. Materials and Design, 2015, 84: 72–78. DOI: 10.1016/j.matdes.2015.06.107.
|
[9] |
KIM G S, SON C Y, LEE S B, et al. Ballistic impact properties of Zr-based amorphous alloy composites reinforced with woven continuous fibers [J]. Metallurgical and Materials Transactions A, 2012, 43(3): 870–881. DOI: 10.1007/s11661-011-0915-5.
|
[10] |
ROSENBERG Z, DEKEL E. Terminal ballistics [M]. Berlin: Spring, 2012: 1−36.
|
[11] |
HOLMQUIST T J, JOHNSON G R. Characterization and evaluation of silicon carbide for high-velocity impact [J]. Journal of Applied Physics, 2005, 97(9): 093502. DOI: 10.1063/1.1881798.
|
[12] |
JOHNSON G R, HOLMQUIST T J. An improved computational constitutive model for brittle materials [J]. AIP Conference Proceedings, 1994, 309(1): 981–984. DOI: 10.1063/1.46199.
|
[13] |
JOHNSON G R, HOLMQUIST T J, CHOCRON S, et al. Response of a polystyrene foam subjected to large strains and high pressures [J]. European Physical Journal: Special Topics, 2018, 227(1): 61–71. DOI: 10.1140/epjst/e2018-00072-8.
|
[14] |
JOHNSON G R, HOLMQUIST T J. Response of boron carbide subjected to large strains, high strain rates, and high pressures [J]. Journal of Applied Physics, 1999, 85(12): 8060–8073. DOI: 10.1063/1.370643.
|
[15] |
HOLMQUIST T J, JOHNSON G R. Characterization and evaluation of boron carbide for plate-impact conditions [J]. Journal of Applied Physics, 2006, 100(9): 093525. DOI: 10.1063/1.2362979.
|
[16] |
HOLMQUIST T J, TEMPLETON D W, BISHNOI K D. Constitutive modeling of aluminum nitride for large strain, high-strain rate, and high-pressure applications [J]. International Journal of Impact Engineering, 2001, 25(3): 211–231. DOI: 10.1016/S0734-743X(00)00046-4.
|
[17] |
HOLMQUIST T J, JOHNSON G R. Response of silicon carbide to high velocity impact [J]. Journal of Applied Physics, 2002, 91(9): 5858–5866. DOI: 10.1063/1.1468903.
|
[18] |
MA G C, ZHU Z W, WANG Z, et al. Deformation behavior of the Zr53.5Cu26.5Ni5Al12Ag3 bulk metallic glass over a wide range of strain rate and temperatures [J]. Journal of Materials Science and Technology, 2015, 31(9): 941–945. DOI: 10.1016/j.jmst.2015.06.001.
|
[19] |
WANG G Y, LIAW P K, MORRISON M L. Progress in studying the fatigue behavior of Zr-based bulk-metallic glasses and their composites [J]. Intermetallics, 2009, 17(8): 579–590. DOI: 10.1016/j.intermet.2009.01.017.
|
[20] |
WANG J X, YIN Y, LUO C W. Johnson-Holmquist-II (JH-2) constitutive model for rock materials: parameter determination and application in tunnel smooth blasting [J]. Applied Sciences, 2018, 8(9): 1675. DOI: 10.3390/app8091675.
|
[21] |
SIMONS E C, WEERHEIJM J, SLUYS L J. Simulating brittle and ductile response of alumina ceramics under dynamic loading [J]. Engineering Fracture Mechanics, 2019, 216: 106481. DOI: 10.1016/j.engfracmech.2019.05.013.
|
[22] |
张云峰, 罗兴柏, 施冬梅, 等. 动态压缩下Zr基非晶合金失效释能机理 [J]. 爆炸与冲击, 2019, 39(6): 063101. DOI: 10.11883/bzycj-2018-0114.
ZHANG Y F, LUO X B, SHI D M, et al. Failure behavior and energy release of Zr-based amorphous alloy under dynamic compression [J]. Explosion and Shock Waves, 2019, 39(6): 063101. DOI: 10.11883/bzycj-2018-0114.
|
[23] |
王枫, 胡丰, 黄鹏, 等. 球状飞射物对屋面瓦片冲击效应的数值模拟 [J]. 同济大学学报(自然科学版), 2018, 46(10): 1334–1340. DOI: 10.11908/j.issn.0253-374x.2018.10.003.
WANG F, HU F, HUANG P, et al. Numerical simulation of impact effect of windborne spherical debris on roof tiles [J]. Journal of Tongji University (Natural Science), 2018, 46(10): 1334–1340. DOI: 10.11908/j.issn.0253-374x.2018.10.003.
|
[24] |
石永相. 多元非晶合金含能材料药型罩应用研究[D]. 石家庄: 陆军工程大学, 2018.
|
[25] |
TOGO H, ZHANG Y, KAWAMURA Y, et al. Properties of Zr-based bulk metallic glass under shock compression [J]. Materials Science and Engineering: A, 2007, 449−451: 264–268. DOI: 10.1016/j.msea.2006.02.431.
|
[26] |
MARTIN M, SEKINE T, KOBAYASHI T, et al. High-pressure equation of the state of a zirconium-based bulk metallic glass [J]. Metallurgical and Materials Transactions A, 2007, 38(11): 2689–2696. DOI: 10.1007/s11661-007-9263-x.
|
[27] |
WANG W H. The elastic properties, elastic models and elastic perspectives of metallic glasses [J]. Progress in Materials Science, 2012, 57(3): 487–656. DOI: 10.1016/j.pmatsci.2011.07.001.
|
[28] |
JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
|
[29] |
俞宇颖, 谭华, 戴诚达, 等. 高压屈服强度测量方法比较研究 [J]. 高压物理学报, 2013, 27(6): 821–827. DOI: 10.11858/gywlxb.2013.06.005.
YU Y Y, TAN H, DAI C D, et al. Comparison of methods for high-pressure dynamic yield strength measurement [J]. Chinese Journal of High Pressure Physics, 2013, 27(6): 821–827. DOI: 10.11858/gywlxb.2013.06.005.
|
[30] |
STEINBERG D J, COCHRAN S G, GUINAN M W. A constitutive model for metals applicable at high-strain rate [J]. Journal of Applied Physics, 1980, 51(3): 1498–1504. DOI: 10.1063/1.327799.
|
[31] |
张云峰, 罗兴柏, 孙华刚, 等. Zr41Ti14Ni12.5Cu10Be22.5非晶合金冲击压缩行为理论与实验研究 [J]. 哈尔滨工业大学学报, 2019, 51(5): 94–99. DOI: 10.11918/j.issn.0367-6234.201804141.
ZHANG Y F, LUO X B, SUN H G, et al. Theoretical and experimental research of shock compressive behavior of Zr41Ti14Ni12.5Cu10Be22.5 amorphous alloy [J]. Journal of Harbin Institute of Technology, 2019, 51(5): 94–99. DOI: 10.11918/j.issn.0367-6234.201804141.
|
[32] |
HOLMQUIST T J, JOHNSON G R, GRADY D E, et al. High strain rate properties and constitutive modeling of glass [C] // Proceedings of the 15th International Symposium on Ballistics. Washington, USA: Sandia National Labs, 1995: 11-14.
|