Volume 40 Issue 7
Jul.  2020
Turn off MathJax
Article Contents
ZHAO Yong, XIAO Chenglong, YANG Liyun, DING Chenxi, ZHENG Changda. Dynamic caustics experiments on offset effects between dynamic and static cracks[J]. Explosion And Shock Waves, 2020, 40(7): 073201. doi: 10.11883/bzycj-2019-0401
Citation: ZHAO Yong, XIAO Chenglong, YANG Liyun, DING Chenxi, ZHENG Changda. Dynamic caustics experiments on offset effects between dynamic and static cracks[J]. Explosion And Shock Waves, 2020, 40(7): 073201. doi: 10.11883/bzycj-2019-0401

Dynamic caustics experiments on offset effects between dynamic and static cracks

doi: 10.11883/bzycj-2019-0401
  • Received Date: 2019-10-21
  • Rev Recd Date: 2020-05-20
  • Available Online: 2020-06-25
  • Publish Date: 2020-07-01
  • To explore the interaction between dynamic and static cracks in brittle materials under impact load, polymethyl methacrylate (PMMA) was chosen as the experiment material, considering that the PMMA has good optical properties and its fracture behavior is similar to rock under dynamic load. The size of the specimens was 220 mm×50 mm×5 mm with a prefabricated crack of 5 mm in length and a static crack of 10 mm in length. The prefabricated crack was located at the center of the bottom edge of the specimen, and the center of the static crack was located at the horizontal axis of the specimen. Three-point bending experiments of different defects in PMMA had been explored by setting the static crack offset distance as the single variable with the digital laser dynamic caustic test system and the fractal law of dynamic crack at different bias distances was studied by combining with the geometric fractal theory. Researches show that when the offset distance is at a critical condition between prefabricated crack and static crack (6 mm in this experiment), the fractal dimension corresponding to the crack track is the largest, the regularity degree of the crack track is the lowest and the failure mode of the crack is the most complicated. When the offset distance is between 0 to 6 mm, crack Ⅰ propagates vertically and intersects with a distant static crack, then produces a secondary crack which penetrates the specimen after a period of stagnation, the linear function relationship between the offset distance and the vertical distance of the intersection point is then obtained. The existence of the offset distance does not affect the crack time and the stress intensity factor of crack Ⅰ, but it can significantly reduce the dynamic stress intensity factor of crack Ⅱ, the length of stagnation decreases with the increase of offset distance. When the offset distance is larger than the critical offset distance, the dynamic crack no longer intersects with the static crack, but extends to the upper edge of the specimen in an arch shape until it penetrates the specimen, and there is also a significant hysteresis in the cracking time and the position of the crack.
  • loading
  • [1]
    RICHARD H A, SANDER M. Damages caused by crack growth [M]//RICHARD H A, SANDER M. Fatigue Crack Growth. Cham: Springer, 2016. DOI: 10.1007/978-3-319-32534-7_2
    [2]
    RICHARD H A, FULLAND M, SANDER M. Theoretical crack path prediction [J]. Fatigue and Fracture of Engineering Materials and Structures, 2005, 28(1−2): 3–12. DOI: 10.1111/j.1460-2695.2004.00855.x.
    [3]
    杨仁树, 王雁冰, 侯丽冬, 等. 冲击荷载下缺陷介质裂纹扩展的DLDC试验 [J]. 岩石力学与工程学报, 2014, 33(10): 1971–1976. DOI: 10.13722/j.cnki.jrme.2014.10.004.

    YANG R S, WANG Y B, HOU L D, et al. DLDC experiment on crack propagation in defective medium under impact loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(10): 1971–1976. DOI: 10.13722/j.cnki.jrme.2014.10.004.
    [4]
    杨仁树, 苏洪, 龚悦, 等. 冲击作用下静止裂纹与运动裂纹相互作用的试验研究 [J]. 振动与冲击, 2018, 37(8): 107–112. DOI: 10.13465/j.cnki.jvs.2018.08.017.

    YANG R S, SU H, GONG Y, et al. Experimental study of interaction between stationary crack and moving crack under impact [J]. Journal of Vibration and Shock, 2018, 37(8): 107–112. DOI: 10.13465/j.cnki.jvs.2018.08.017.
    [5]
    姚学锋, 熊春阳, 方竞. 含偏置裂纹三点弯曲梁的动态断裂行为研究 [J]. 力学学报, 1996, 28(6): 661–669. DOI: 10.3321/j.issn:0459-1879.1996.06.003.

    YAO X F, XIONG C Y, FANG J. Study of dynamic fracture behaviour on three-point-bend beam with off-center edge-crack [J]. Acta Mechanica Sinica, 1996, 28(6): 661–669. DOI: 10.3321/j.issn:0459-1879.1996.06.003.
    [6]
    YAO X F, XU W, XU M Q, et al. Experimental study of dynamic fracture behavior of PMMA with overlapping offset-parallel cracks [J]. Polymer Testing, 2003, 22(6): 663–670. DOI: 10.1016/S0142-9418(02)00173-3.
    [7]
    岳中文, 宋耀, 邱鹏, 等. 冲击载荷下双预置裂纹三点弯曲梁动态断裂实验 [J]. 振动与冲击, 2017, 36(4): 151–156, 177. DOI: 10.13465/j.cnki.jvs.2017.04.024.

    YUE Z W, SONG Y, QIU P, et al. A dynamic fracture experiment of a three-point-bend beam containing double pre-existing cracks under impact load [J]. Journal of Vibration and Shock, 2017, 36(4): 151–156, 177. DOI: 10.13465/j.cnki.jvs.2017.04.024.
    [8]
    GONG K Z, LI Z, QIN W Z. Influence of loading rate on dynamic fracture behavior of fiber-reinforced composites [J]. Acta Mechanica Solida Sinica, 2008, 21(5): 457–460. DOI: 10.1007/s10338-008-0855-9.
    [9]
    杨立云, 张勇进, 孙金超, 等. 偏置裂纹对含双裂纹PMMA试件动态断裂影响效应研究 [J]. 矿业科学学报, 2017, 2(4): 330–335. DOI: 10.19606/j.cnki.jmst.2017.04.003.

    YANG L Y, ZHANG Y J, SUN J C, et al. The effect of offset distance on dynamic fracture behavior of PMMA with double cracks [J]. Journal of Mining Science and Technology, 2017, 2(4): 330–335. DOI: 10.19606/j.cnki.jmst.2017.04.003.
    [10]
    李清, 薛耀东, 于强, 等. 含预制裂纹L形梁柱试件动态断裂过程 [J]. 爆炸与冲击, 2018, 38(3): 491–500. DOI: 10.11883/bzycj-2017-0255.

    LI Q, XUE Y D, YU Q, et al. Dynamic fracture processes of L-shaped beam-column specimens with prefabricated cracks [J]. Explosion and Shock Waves, 2018, 38(3): 491–500. DOI: 10.11883/bzycj-2017-0255.
    [11]
    李清, 薛耀东, 于强, 等. 含预制裂纹的悬臂梁-柱试件冲击断裂实验 [J]. 矿业科学学报, 2018, 3(2): 139–147. DOI: 10.19606/j.cnki.jmst.2018.02.005.

    LI Q, XUE Y D, YU Q, et al. Experimental study on impact fracture of cantilever beam-column specimen with prefabricated crack [J]. Journal of Mining Science and Technology, 2018, 3(2): 139–147. DOI: 10.19606/j.cnki.jmst.2018.02.005.
    [12]
    GUO D M, ZHOU B W, LIU K, et al. Dynamic caustics test of blast load impact on neighboring different cross-section roadways [J]. International Journal of Mining Science and Technology, 2016, 26(5): 803–808. DOI: 10.1016/j.ijmst.2016.05.045.
    [13]
    沈世伟, 廖文旺, 徐燕, 等. 不同节理间距条件下岩体双孔爆破动焦散试验研究 [J]. 煤炭学报, 2018, 43(8): 2180–2186. DOI: 10.13225/j.cnki.jccs.2017.1223.

    SHEN S W, LIAO W W, XU Y, et al. Dynamic caustics test of rock mass under different joint spacing conditions with two-hole blasting [J]. Journal of China Coal Society, 2018, 43(8): 2180–2186. DOI: 10.13225/j.cnki.jccs.2017.1223.
    [14]
    杨立云, 杨仁树, 许鹏. 新型数字激光动态焦散线实验系统及其应用 [J]. 中国矿业大学学报, 2013, 42(2): 188–194. DOI: 10.13247/j.cnki.jcumt.2013.02.005.

    YANG L Y, YANG R S, XU P. Caustics method combined with laser & digital high-speed camera and its applications [J]. Journal of China University of Mining and Technology, 2013, 42(2): 188–194. DOI: 10.13247/j.cnki.jcumt.2013.02.005.
    [15]
    杨仁树, 陈程, 赵勇, 等. 空孔-裂纹偏置方式对PMMA冲击断裂动态行为的影响 [J]. 振动与冲击, 2018, 37(20): 122–128. DOI: 10.13465/j.cnki.jvs.2018.20.019.

    YANG R S, CHEN C, ZHAO Y, et al. Influence of the void-crack offset method on the dynamic behavior of PMMA during impact fracture [J]. Journal of Vibration and Shock, 2018, 37(20): 122–128. DOI: 10.13465/j.cnki.jvs.2018.20.019.
    [16]
    YANG R S, DING C X, LI Y L, et al. Crack propagation behavior in slit charge blasting under high static stress conditions [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 119: 117–123. DOI: 10.1016/j.ijrmms.2019.05.002.
    [17]
    YANG L Y, DING C X. Fracture mechanism due to blast-imposed loading under high static stress conditions [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 107: 150–158. DOI: 10.1016/j.ijrmms.2018.04.039.
    [18]
    杨仁树, 许鹏, 岳中文, 等. 圆孔缺陷与I型运动裂纹相互作用的试验研究 [J]. 岩土力学, 2016, 37(6): 1597–1602. DOI: 10.16285/j.rsm.2016.06.009.

    YANG R S, XU P, YUE Z W, et al. Laboratory study of interaction between a circular hole defect and mode-I moving crack [J]. Rock and Soil Mechanics, 2016, 37(6): 1597–1602. DOI: 10.16285/j.rsm.2016.06.009.
    [19]
    杨立云. 岩石类材料的动态断裂与围压下爆生裂纹的实验研究[D]. 北京: 中国矿业大学(北京), 2011.

    YANG L Y. The experimental study on rock-type materials dynamic fracure and blasting crack propagation under confining pressure [D]. Beijing: China University of Mining and Technology-Beijing, 2011.
    [20]
    DAEHNKE A, ROSSMANITH H P, NAPIER J A L. Gas pressurisation of blast-induced conical cracks [J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(3/4): 263.e1–263.e17. DOI: 10.1016/S1365-1609(97)00282-7.
    [21]
    杨鑫. 爆炸作用下裂隙岩体裂纹扩展模拟试验研究[D]. 四川绵阳: 西南科技大学, 2015.

    YANG X. Simulation test study of fissured rock mass on crack progation under explosion [D]. Mianyang, Sichuan: Southwest University of Science and Technology, 2015.
    [22]
    谢和平. 分形几何及其在岩土力学中的应用 [J]. 岩土工程学报, 1992, 14(1): 14–24. DOI: 10.3321/j.issn:1000-4548.1992.01.002.

    XIE H P. Fractal geometry and its application to rock and soil materials [J]. Chinese Journal of Geotechnical Engineering, 1992, 14(1): 14–24. DOI: 10.3321/j.issn:1000-4548.1992.01.002.
    [23]
    杨仁树, 肖成龙, 丁晨曦, 等. 空孔与运动裂纹相互作用的动焦散线实验研究 [J]. 爆炸与冲击, 2020, 40(5): 052202. DOI: 10.11883/bzycj-2019-0091.

    YANG R S, XIAO C L, DING C X, et al. Experimental study on dynamic caustics of interaction between void and running crack [J]. Explosion and Shock Waves, 2020, 40(5): 052202. DOI: 10.11883/bzycj-2019-0091.
    [24]
    李成杰, 徐颖, 张宇婷, 等. 冲击荷载下裂隙类煤岩组合体能量演化与分形特征研究 [J]. 岩石力学与工程学报, 2019, 38(11): 2231–2241. DOI: 10.13722/j.cnki.jrme.2019.0446.

    LI C J, XU Y, ZHANG Y T, et al. Study on energy evolution and fractal characteristics of cracked coal-rock-like combined body under impact loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(11): 2231–2241. DOI: 10.13722/j.cnki.jrme.2019.0446.
    [25]
    李柯萱, 李铁. 不同加载速率下砂岩弯曲破坏的细观机理 [J]. 爆炸与冲击, 2019, 39(4): 043101. DOI: 10.11883/bzycj-2018-0178.

    LI K X, LI T. Micro-mechanism of bending failure of sandstone under different loading rates [J]. Explosion and Shock Waves, 2019, 39(4): 043101. DOI: 10.11883/bzycj-2018-0178.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article views (4511) PDF downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return