Volume 40 Issue 7
Jul.  2020
Turn off MathJax
Article Contents
WANG Genwei, LIU Mian, SONG Hui, WANG Bin. Influence of radial density arrangement on mechanical properties of metal foam under impact loading[J]. Explosion And Shock Waves, 2020, 40(7): 071401. doi: 10.11883/bzycj-2019-0403
Citation: WANG Genwei, LIU Mian, SONG Hui, WANG Bin. Influence of radial density arrangement on mechanical properties of metal foam under impact loading[J]. Explosion And Shock Waves, 2020, 40(7): 071401. doi: 10.11883/bzycj-2019-0403

Influence of radial density arrangement on mechanical properties of metal foam under impact loading

doi: 10.11883/bzycj-2019-0403
  • Received Date: 2019-10-21
  • Rev Recd Date: 2020-02-08
  • Available Online: 2020-05-25
  • Publish Date: 2020-07-01
  • Based on the generation method of layered density graded foam, new radial density graded foam models were designed by 3D-Voronoi technique, and their mechanical behavior under different impact loads was numerically simulated by finite element software. By analyzing the effects of impact velocity, density gradient and average relative density on the stress of impact end and support end, and energy absorption capacity of metal foams, it is found that the radial positive graded foam has smaller stress values at both ends than the layered positive and negative graded foams, which can simultaneously protect objects at any ends. The stress fluctuation of radial negative graded foam is small, which can ensure the stability of the force received by the object, and the energy absorption values of four metal foams vary alternately at different impact velocities. For the radial graded foam, energy absorption capacity is insensitive to density gradient, but sensitive to gradient direction. The energy absorption capacity of radial negative graded foam is always greater than radial positive graded foam. The larger the average relative density, the greater the stress at both ends, and the energy absorption effect is also enhanced.
  • loading
  • [1]
    BEALS J T, THOMPSON M S. Density gradient effects on aluminium foam compression behaviour [J]. Journal of Materials Science, 1997, 32(13): 3595–3600. DOI: 10.1023/A:1018670111305.
    [2]
    GUPTA N. A functionally graded syntactic foam material for high energy absorption under compression [J]. Materials Letters, 2007, 61(4−5): 979–982. DOI: 10.1016/j.matlet.2006.06.033.
    [3]
    BROTHERS A H, DUNAND D C. Mechanical properties of a density-graded replicated aluminum foam [J]. Materials Science and Engineering: A, 2008, 489(1−2): 439–443. DOI: 10.1016/j.msea.2007.11.076.
    [4]
    BRUCK H A. A one-dimensional model for designing functionally graded materials to manage stress waves [J]. International Journal of Solids and Structures, 2000, 37(44): 6383–6395. DOI: 10.1016/S0020-7683(99)00236-X.
    [5]
    AJDARI A, CANAVAN P, NAYEB-HASHEMI H, et al. Mechanical properties of functionally graded 2-D cellular structures: a finite element simulation [J]. Materials Science and Engineering: A, 2009, 499(1−2): 434–439. DOI: 10.1016/j.msea.2008.08.040.
    [6]
    ZHANG J J, WEI H, WANG Z H, et al. Dynamic crushing of uniform and density graded cellular structures based on the circle arc model [J]. Latin American Journal of Solids and Structures, 2015, 12(6): 1102–1125. DOI: 10.1590/1679-78251630.
    [7]
    LIANG M Z, ZHANG G D, LU F Y, et al. Blast resistance and design of sandwich cylinder with graded foam cores based on the Voronoi algorithm [J]. Thin-Walled Structures, 2017, 112: 98–106. DOI: 10.1016/j.tws.2016.12.016.
    [8]
    王根伟, 王江龙. 负梯度闭孔泡沫金属的力学性能分析 [J]. 固体力学学报, 2017, 38(1): 85–92. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2017.01.008.

    WANG G W, WANG J L. Mechanical properties of closed-cell metal foam with negative density gradient under impact loading [J]. Chinese Journal of Solid Mechanics, 2017, 38(1): 85–92. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2017.01.008.
    [9]
    DING Y Y, ZHENG Z J, WANG Y G, et al. Impact resistance and design of graded cellular cladding [J]. International Journal of Applied Mechanics, 2018, 10(10): 1850107. DOI: 10.1142/S1758825118501077.
    [10]
    LIU Y D, YU J L, ZHENG Z J, et al. A numerical study on the rate sensitivity of cellular metals [J]. International Journal of Solids and Structures, 2009, 46(22−23): 3988–3998. DOI: 10.1016/j.ijsolstr.2009.07.024.
    [11]
    MA G W, YE Z Q, SHAO Z S. Modeling loading rate effect on crushing stress of metallic cellular materials [J]. International Journal of Impact Engineering, 2009, 36(6): 775–782. DOI: 10.1016/j.ijimpeng.2008.11.013.
    [12]
    FAN J H, ZHANG J J, WANG Z H, et al. Dynamic crushing behavior of random and functionally graded metal hollow sphere foams [J]. Materials Science and Engineering: A, 2013, 561: 352–361. DOI: 10.1016/j.msea.2012.10.026.
    [13]
    CUI L, KIERNAN S, GILCHRIST M D. Designing the energy absorption capacity of functionally graded foam materials [J]. Materials Science and Engineering: A, 2009, 507(1−2): 215–225. DOI: 10.1016/j.msea.2008.12.011.
    [14]
    吴鹤翔, 刘颖. 梯度变化对密度梯度蜂窝材料力学性能的影响 [J]. 爆炸与冲击, 2013, 33(2): 163–168. DOI: 10.11883/1001-1455(2013)02-0163-06.

    WU H X, LIU Y. Influences of density gradient variation on mechanical performances of density-graded honeycomb materials [J]. Explosion and Shock Waves, 2013, 33(2): 163–168. DOI: 10.11883/1001-1455(2013)02-0163-06.
    [15]
    WANG X K, ZHENG Z J, YU J L. Crashworthiness design of density-graded cellular metals [J]. Theoretical and Applied Mechanics Letters, 2013, 3(3): 031001. DOI: 10.1063/2.1303101.
    [16]
    YANG J, WANG S L, ZHENG Z J, et al. Impact resistance of graded cellular metals using cell-based finite element models [J]. Key Engineering Materials, 2016, 703: 400–405. DOI: 10.4028/www.scientific.net/KEM.703.400.
    [17]
    CHEN D, KITIPORNCHAI S, YANG J. Dynamic response and energy absorption of functionally graded porous structures [J]. Materials & Design, 2018, 140: 473–487. DOI: 10.1016/j.matdes.2017.12.019.
    [18]
    LAN X K, FENG S S, HUANG Q, et al. Blast response of continuous-density graded cellular material based on the 3D Voronoi model [J]. Defence Technology, 2018, 14(5): 443–440. DOI: 10.1016/j.dt.2018.06.003.
    [19]
    常白雪, 郑志军, 赵凯, 等. 具有恒定冲击载荷的梯度泡沫金属材料设计 [J]. 爆炸与冲击, 2019, 39(4): 3–11. DOI: 10.11883/bzycj-2018-0431.

    CHANG B X, ZHENG Z J, ZHAO K, et al. Design of gradient foam metal materials with a constant impact load [J]. Explosion and Shock Waves, 2019, 39(4): 3–11. DOI: 10.11883/bzycj-2018-0431.
    [20]
    ZENG H B, PATTOFATTO S, ZHAO H, et al. Impact behaviour of hollow sphere agglomerates with density gradient [J]. International Journal of Mechanical Sciences, 2010, 52(5): 680–688. DOI: 10.1016/j.ijmecsci.2009.11.012.
    [21]
    AJDARI A, NAYEB-HASHEMI H, VAZIRI A. Dynamic crushing and energy absorption of regular, irregular and functionally graded cellular structures [J]. International Journal of Solids and Structures, 2011, 48(3−4): 506–516. DOI: 10.1016/j.ijsolstr.2010.10.018.
    [22]
    ZHANG X C, AN L Q, DING H M. Dynamic crushing behavior and energy absorption of honeycombs with density gradient [J]. Journal of Sandwich Structures & Materials, 2014, 16(2): 125–147. DOI: 10.1177/1099636213509099.
    [23]
    ZHENG J, QIN Q H, WANG T J. Impact plastic crushing and design of density-graded cellular materials [J]. Mechanics of Materials, 2016, 94: 66–78. DOI: 10.1016/j.mechmat.2015.11.014.
    [24]
    ZHU H X, WINDLE A H. Effects of cell irregularity on the high strain compression of open-cell foams [J]. Acta Materialia, 2002, 50(5): 1041–1052. DOI: 10.1016/S1359-6454(01)00402-5.
    [25]
    曹国剑, 张一思, 刘东戎, 等. 制备梯度多孔材料的方法: CN101418391A [P]. 2009-04-29.
    [26]
    李妍妍, 郑志军, 虞吉林, 等. 闭孔泡沫金属变形模式的有限元分析 [J]. 爆炸与冲击, 2014, 34(4): 464–470. DOI: 10.11883/1001-1455(2014)04-0464-07.

    LI Y Y, ZHENG Z J, YU J L, et al. Finite element analysis on deformation modes of closed-cell metallic foam [J]. Explosion and Shock Waves, 2014, 34(4): 464–470. DOI: 10.11883/1001-1455(2014)04-0464-07.
    [27]
    WANG J L, LI X, WANG G W. Deformation modes of the graded closed-cell foam under impact loading [C] // Proceedings of 2016 International Conference on Applied Mechanics, Electronics and Mechatronics Engineering. Beijing, 2016. DOI: 10.12783/dtetr/ameme2016/5803.
    [28]
    KOOISTRA G W, DESHPANDE V S, WADLEY H N G. Compressive behavior of age hardenable tetrahedral lattice truss structures made from aluminium [J]. Acta Materialia, 2004, 52(14): 4229–4237. DOI: 10.1016/j.actamat.2004.05.039.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (3703) PDF downloads(109) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return