Volume 40 Issue 9
Sep.  2020
Turn off MathJax
Article Contents
YI Wenhua, LIU Liansheng, YAN Lei, DONG Binbin. Vibration signal de-noising based on improved EMD algorithm[J]. Explosion And Shock Waves, 2020, 40(9): 095201. doi: 10.11883/bzycj-2019-0471
Citation: YI Wenhua, LIU Liansheng, YAN Lei, DONG Binbin. Vibration signal de-noising based on improved EMD algorithm[J]. Explosion And Shock Waves, 2020, 40(9): 095201. doi: 10.11883/bzycj-2019-0471

Vibration signal de-noising based on improved EMD algorithm

doi: 10.11883/bzycj-2019-0471
  • Received Date: 2019-12-16
  • Rev Recd Date: 2020-03-10
  • Available Online: 2020-07-25
  • Publish Date: 2020-09-01
  • In order to solve the problem of poor performance of EMD (empirical mode decomposition) filter de-noising for vibration signal, an adaptive orthogonal decomposition signal de-noising method PEMD (principal empirical mode decomposition) is proposed. This algorithm combines the self-adaptability of EMD decomposition and the complete orthogonality of principal component analysis (PCA), eliminates the phenomenon of mode aliasing in the process of signal EMD decomposition, and obtains the best de-noising effect. The results showed that compared with EMD and EEMD (ensemble empirical mode decomposition), PEMD (principal component analysis) improved 1.15 dB and 0.38 dB respectively in the simulation test, and the root-mean-square error was the smallest. In frequency domain, PEMD has the highest sensitivity to the frequency of simulation signal (30 Hz), and the noise filtering effect is the best outside 30 Hz. In the blasting vibration test, PEMD and EEMD had better performance in removing burrs, and PEMD had the best performance in preserving medium and low frequency vibration signals at 0−300 Hz, and the best performance in filtering high frequency noises above 300 Hz.
  • loading
  • [1]
    ZHAI M Y. Seismic data de-noising based on the fractional Fourier transformation [J]. Journal of Applied Geophysics, 2014, 109: 62–70. DOI: 10.1016/j.jappgeo.2014.07.012.
    [2]
    李夕兵, 凌同华, 张义平. 爆破震动信号理论与技术[M]. 北京: 科学出版社, 2009: 60−63.
    [3]
    中国生, 徐国元, 赵建平. 基于小波变换的爆破地震信号阈值去噪的应用研究 [J]. 岩土工程学报, 2005, 27(9): 1055–1059. DOI: 10.3321/j.issn:1000-4548.2005.09.016.

    ZHONG G S, XU G Y, ZHAO J P. Study and application of threshold de-noising in seismic signals of blasting based on wavelet transform [J]. Chinese Journal of Geotechnical Engineering, 2005, 27(9): 1055–1059. DOI: 10.3321/j.issn:1000-4548.2005.09.016.
    [4]
    王志超, 夏虹, 朱少民, 等. 基于改进小波包的堆内构件振动信号去噪方法研究 [J]. 应用科技, 2018, 46(6): 74–79. DOI: 10.11991/yykj.201804005.

    WANG Z C, XIA H, ZHU S M, et al. Research on vibration signal de-noising method of PWR internals based on improved wavelet packet [J]. Applied Science and Technology, 2018, 46(6): 74–79. DOI: 10.11991/yykj.201804005.
    [5]
    马宏伟, 张大伟, 曹现刚, 等. 基于EMD的振动信号去噪方法研究 [J]. 振动与冲击, 2016, 35(22): 38–40. DOI: 10.13465/j.cnki.jvs.2016.22.006.

    MA H W, ZHANG D W, CAO X G, et al. Vibration signal de-noising method based on empirical mode decomposition [J]. Journal of Vibration and Shock, 2016, 35(22): 38–40. DOI: 10.13465/j.cnki.jvs.2016.22.006.
    [6]
    曹莹, 段玉波, 刘继承, 等. 多尺度形态滤波模态混叠抑制方法 [J]. 电机与控制学报, 2016, 20(9): 110–116. DOI: 10.15938/j.emc.2016.09.016.

    CAO Y, DUAN Y B, LIU J C, et al. Multi-scale morphological filtering method for mode mixing suppression [J]. Electric Machines and Control, 2016, 20(9): 110–116. DOI: 10.15938/j.emc.2016.09.016.
    [7]
    WU Z H, HUANG N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method [J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1–41. DOI: 10.1142/S1793536909000047.
    [8]
    李晓斌. HHT中EMD方法正交性的研究[D]. 昆明: 昆明理工大学, 2010: 27−45.
    [9]
    司守奎, 孙兆亮, 数学建模算法与应用[M]. 北京: 国防工业出版社, 2017: 231−239.
    [10]
    LIU B, FU A Q, YAO Z G, et al. SO2, Concentration retrieval algorithm using EMD and PCA with application in CEMS based on UV-DOAS [J]. Optik-International Journal for Light and Electron Optics, 2018, 158: 273–282. DOI: 10.1016/j.ijleo.2017.12.057.
    [11]
    JAVED E, FAYE I, MALIK A S, et al. Removal of BCG artefact from concurrent fMRI-EEG recordings based on EMD and PCA [J]. Journal of Neuroscience Methods, 2017, 291: 150–165. DOI: 10.1016/j.jneumeth.2017.08.020.
    [12]
    MACKIEWICZ A, RATAJCZAK W. Principal components analysis (PCA) [J]. Computers & Geosciences, 1993, 19(3): 303–342. DOI: 10.1016/0098-3004(93)90090-R.
    [13]
    王志亮, 陈贵豪, 黄佑鹏. EEMD修正爆破加速度零漂信号中的最优白噪声系数 [J]. 爆炸与冲击, 2019, 39(8): 084201. DOI: 10.11883/bzycj-2019-0154.

    WANG Z L, CHEN G H, HUANG Y P. Optimal white noise coefficient in EEMD corrected zero drift signal of blasting acceleration [J]. Explosion and Shock Waves, 2019, 39(8): 084201. DOI: 10.11883/bzycj-2019-0154.
    [14]
    胡厅. 机械系统多点耦合非线性振动信号降噪方法研究[D]. 长沙: 湖南科技大学, 2016: 8−10.
    [15]
    韩亮, 刘殿书, 辛崇伟, 等. 深孔台阶爆破近区振动信号趋势项去除方法 [J]. 爆炸与冲击, 2018, 38(5): 1006–1012. DOI: 10.11883/bzycj-2016-0194.

    HAN L, LIU D S, XIN C W, et al. A method to remove the trend term of vibration signal near the deep hole step blasting [J]. Explosion and Shock Waves, 2018, 38(5): 1006–1012. DOI: 10.11883/bzycj-2016-0194.
    [16]
    钟建军, 宋健, 由长喜, 等. 基于信噪比评价的阈值优选小波去噪法 [J]. 清华大学学报(自然科学版), 2014, 54(2): 259–263. DOI: 10.16511/j.cnki.qhdxxb.2014.02.022.

    ZHONG J J, SONG J, YOU C X, et al. Wavelet de-noising method with threshold selection rules based on SNR evaluations [J]. Journal of Tsinghua University (Science & Technology), 2014, 54(2): 259–263. DOI: 10.16511/j.cnki.qhdxxb.2014.02.022.
    [17]
    司祯祯. 傅里叶变换与小波变换在信号去噪中的应用 [J]. 电子设计工程, 2011, 19(4): 155–157. DOI: 10.3969/j.issn.1674-6236.2011.04.045.

    SI Z Z. Application of Fourier transform and wavelet transform in signal de-noising [J]. Electronic Design Engineering, 2011, 19(4): 155–157. DOI: 10.3969/j.issn.1674-6236.2011.04.045.
    [18]
    张声辉, 刘连生, 钟清亮, 等. 露天边坡爆破地震波能量分布特征研究 [J]. 振动与冲击, 2019, 38(7): 224–232. DOI: 10.13465/j.cnki.jvs.2019.07.032.

    ZHANG S H, LIU L S, ZHONG Q L, et al. Energy distribution characteristics of blast seismic wave on open pit slope [J]. Journal of Vibration and Shock, 2019, 38(7): 224–232. DOI: 10.13465/j.cnki.jvs.2019.07.032.
    [19]
    岳相臣. 经验模态分解算法应用研究[D]. 西安: 西安电子科技大学, 2013:17−19.
    [20]
    HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceedings A, 1998, 454(1971): 903–995. DOI: 10.1098/rspa.1998.0193.
    [21]
    KRISHNA E H, SIVANI K, REDDY K A. On the use of EMD based adaptive filtering for OFDM channel estimation [J]. AEU-International Journal of Electronics and Communications, 2018, 83: 492–500. DOI: 10.1016/j.aeue.2017.11.002.
    [22]
    CHEN B, YU S Y, YU Y, et al. Nonlinear active noise control system based on correlated EMD and Chebyshev filter [J]. Mechanical Systems and Signal Processing, 2019, 130: 74–86. DOI: 10.1016/j.ymssp.2019.04.059.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (4040) PDF downloads(89) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return