Citation: | WANG Fei, LIU Jingbo, HAN Pengfei, BAO Xin, WANG Xiaofeng, LI Shutao. A practical calculation method of steel plate concrete walls to resist perforation from missile impact in nuclear engineering[J]. Explosion And Shock Waves, 2020, 40(10): 105101. doi: 10.11883/bzycj-2020-0020 |
United States Nuclear Regulatory Commission. 50.150 aircraft impact assessment [DB/OL]. (2009-06-12)[2019-10-02]. https://www.nrc.gov/reading-rm/doc-collections/cfr/part050/part050-0150.html.
|
Nuclear Energy Institute. NEI 07-13 methodology for performing aircraft impact assessments for new plant designs [S]. Washington: Nuclear Energy Institute, 2011.
|
U.S. Nuclear Regulatory Commission. DG-1176 Guidance for the assessment of beyond-design-basis aircraft impacts [S]. Washington: U.S. Nuclear Regulatory Commission, 2009.
|
国家核安全局. 核动力厂设计安全规定: HAF 102-2016 [S]. 北京: 国家核安全局, 2016: 24−25.
|
刘晶波, 韩鹏飞, 林丽, 等. 飞机撞击建(构)筑物研究进展 [J]. 爆炸与冲击, 2016, 36(2): 269–278. DOI: 10.11883/1001-1455(2016)02-0269-10.
LIU J B, HAN P F, LIN L, et al. Research progress of buildings and structures subjected to aircraft impact [J]. Explosion and Shock Waves, 2016, 36(2): 269–278. DOI: 10.11883/1001-1455(2016)02-0269-10.
|
刘晶波, 韩鹏飞, 郑文凯, 等. 商用飞机撞击核电站屏蔽厂房数值模拟 [J]. 爆炸与冲击, 2016, 36(3): 391–399. DOI: 10.11883/1001-1455(2016)03-0391-09.
LIU J B, HAN P F, ZHENG W K, et al. Numerical investigation of shield building for nuclear power plant subjected to commercial aircraft impact [J]. Explosion and Shock Waves, 2016, 36(3): 391–399. DOI: 10.11883/1001-1455(2016)03-0391-09.
|
LIU J B, HAN P F. Numerical analyses of a shield building subjected to a large commercial aircraft impact [J]. Shock and Vibration, 2018, 2018(6): 1–17.
|
ARROS J, DOUMBALSKI N. Analysis of aircraft impact to concrete structures [J]. Nuclear Engineering and Design, 2007, 237(12−13): 1241–1249. DOI: 10.1016/j.nucengdes.2006.09.044.
|
THAI D K, KIM S E. Safety assessment of a nuclear power plant building subjected to an aircraft crash [J]. Nuclear Engineering and Design, 2015, 293: 38–52. DOI: 10.1016/j.nucengdes.2015.07.053.
|
BRUHL J C, VARMA A H, JOHNSON W H. Design of composite SC walls to prevent perforation from missile impact [J]. International Journal of Impact Engineering, 2015, 75: 75–87. DOI: 10.1016/j.ijimpeng.2014.07.015.
|
CHEN X Y, HUANG X L, LIANG G J. Comparative analysis of perforation models of metallic plates by rigid sharp-nosed projectiles [J]. International Journal of Impact Engineering, 2011, 38(7): 613–621. DOI: 10.1016/j.ijimpeng.2010.12.005.
|
FORRESTAL M J, WARREN T L. Perforation equations for conical and ogival nose rigid projectiles into aluminum target plates [J]. International Journal of Impact Engineering, 2009, 36(2): 220–225. DOI: 10.1016/j.ijimpeng.2008.04.005.
|
CHEN X Y, LI Q M. Deep penetration of a non-deformable projectile with different geometrical characteristics [J]. International Journal of Impact Engineering, 2002, 27(6): 619–637. DOI: 10.1016/S0734-743X(02)00005-2.
|
LI Q M, CHEN X W. Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile [J]. International Journal of Impact Engineering, 2003, 28(1): 93–116. DOI: 10.1016/S0734-743X(02)00037-4.
|
LI Q M, REID S R, WEN H M, et al. Local impact effects of hard missiles on concrete targets [J]. International Journal of Impact Engineering, 2005, 32(1−4): 224–284. DOI: 10.1016/j.ijimpeng.2005.04.005.
|
KAR A K. Residual velocity for projectiles [J]. Nuclear Engineering and Design, 1979, 53(1): 87–95. DOI: 10.1016/0029-5493(79)90042-6.
|
中华人民共和国住房和城乡建设部. 混凝土结构设计规范(2015版): GB 50010-2010 [S]. 北京: 中国建筑工业出版社, 2011: 103−106.
|
KIM K S, MOON I H, CHOI H J, et al. A preliminary study on the local impact behavior of steel-plate concrete walls [J]. Annals of Nuclear Energy, 2017, 102: 210–219. DOI: 10.1016/j.anucene.2016.12.006.
|
HALLQUIST J O. LS-DYNA theory manual: Version 971 [M]. Livermore: Livermore Software Technology Corporation, 2007: 15−19.
|
MIZUNO J, KOSHIKA N, MORIKAWA H, et al. Investigation on impact resistance of steel plate reinforced concrete barriers against aircraft impact, part 1: test program and results [C] // Proceedings of the 18th International Conference on Structural Mechanics in Reactor Technology. Beijing: China Nuclear Society, 2005: 2566−2579.
|
中华人民共和国建设部, 中华人民共和国国家质量监督检验检疫总局. 人民防空地下室设计规范: GB 50038-2005 [S]. 北京: 国标图集出版社, 2006: 52−68.
|
US Department of the Army. TM5-1300 The design of structures to resist the effects of accidental explosions [M]. Washington, DC: US Department of the Army, the Navy and the Air Force, 1990.
|
Westinghouse Electric Company LLC. Passive safety systems and timeline for station blackout [DB/OL]. (2011)[2017-08-01]. https://www.westinghousenuclear.com/Portals/0/New%20Plants/AP1000/AP1000%20Station%20Blackout.pdf?timestamp=1404842353431.
|
The Boeing Company. Boeing commercial airplanes [DB/OL]. (2020-05-18)[2017-09-02]. https://boeing.mediaroom.com.
|
Boeing Commercial Airplanes. 767 Airplane characteristics for airport planning: D6-58328 [R]. Seattle: Boeing Commercial Airplanes, 2005.
|