Volume 41 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
TANG Jiani, XU Bian, ZHENG Yuxuan, ZHOU Fenghua. Experimental study for dynamic fragmentation of brittle expansion rings[J]. Explosion And Shock Waves, 2021, 41(1): 014101. doi: 10.11883/bzycj-2020-0049
Citation: TANG Jiani, XU Bian, ZHENG Yuxuan, ZHOU Fenghua. Experimental study for dynamic fragmentation of brittle expansion rings[J]. Explosion And Shock Waves, 2021, 41(1): 014101. doi: 10.11883/bzycj-2020-0049

Experimental study for dynamic fragmentation of brittle expansion rings

doi: 10.11883/bzycj-2020-0049
  • Received Date: 2020-02-28
  • Rev Recd Date: 2020-06-29
  • Publish Date: 2021-01-05
  • A liquid-driving brittle expansion ring test technique has been developed. The precise centering of the brittle ring was realized by means of a liftable convex platform to avoid the bending fracture caused by eccentric expansion. The strain vs time curves in the process of tensile fracture were measured by the semiconductor strain gauges on the expansion ring. Then expansion tensile fracture experiments of silicon carbide (SiC) ceramics were carried out, and their dynamic tensile fracture strength and average size and distribution of fragments were obtained. The experimental results show as follows. (1) The liquid-driving expansion ring experiment can better achieve the tensile fracture of the ceramic material. At a strain rate of 101 s−1, the tensile fracture strain of SiC ceramic is 3.7×10−4−7.4×10−4, and the average tensile fracture stress is 206 MPa. (2) The dimensionless average fragment size of SiC ceramic falls within the reasonable interval of various brittle fracture prediction models. With the increase of loading strain rate, the average fragment size of SiC ceramic decreases. (3) The fragment distribution of SiC ceramic tensile fracture basically conforms to the Rayleigh distribution, but there are some deviations in the fine size and large size fragment distribution.
  • loading
  • [1]
    BANNIKOVA I, UVAROV S, DAVYDOVA M, et al. Study of ceramic tube fragmentation under shock wave loading [J]. Procedia Materials Science, 2014, 3: 592–597. DOI: 10.1016/j.mspro.2014.06.098.
    [2]
    NIE X, WRIGHT J C, CHEN W W, et al. Rate effects on the mechanical response of magnesium aluminate spinel [J]. Materials Science and Engineering: A, 2011, 528(15): 5088–5095. DOI: 10.1016/j.msea.2011.03.027.
    [3]
    FORQUIN P, DENOUAL C, COTTENOT C E, et al. Experiments and modelling of the compressive behaviour of two SiC ceramics [J]. Mechanics of Materials, 2003, 35(10): 987–1002. DOI: 10.1016/s0167-6636(02)00321-6.
    [4]
    ANDREWS E W, KIM K S. Threshold conditions for dynamic fragmentation of ceramic particles [J]. Mechanics of Materials, 1998, 29(3−4): 161–180. DOI: 10.1016/s0167-6636(98)00014-3.
    [5]
    International Society for Rock Mechanics. Suggested methods for determining tensile strength of rock materials [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1978, 15(3): 99–103. DOI: 10.1016/0148-9062(78)90003-7.
    [6]
    WANG Q Z, XING L. Determination of fracture toughness KIC by using the flattened Brazilian disk specimen for rocks [J]. Engineering Fracture Mechanics, 1999, 64(2): 193–201. DOI: 10.1016/S0013-7944(99)00065-X.
    [7]
    汤铁钢, 刘仓理. 一种新型爆炸膨胀环实验装置 [J]. 实验力学, 2013, 28(2): 247–254. DOI: 10.7520/1001-4888-12-022.

    TANG T G, LIU C L. A novel experimental setup for explosively loaded expanding ring test [J]. Journal of Experimental Mechanics, 2013, 28(2): 247–254. DOI: 10.7520/1001-4888-12-022.
    [8]
    WARNES R H, KARPP R R, FOLLANSBEE P S. The freely expanding ring test: a test to determine material strength at high strain rates [J]. Journal of Engineering Materials and Technology, 1986, 108(4): 335–339. DOI: 10.1115/1.3225891.
    [9]
    桂毓林, 孙承纬, 李强, 等. 实现金属环动态拉伸的电磁加载技术研究 [J]. 爆炸与冲击, 2006, 26(6): 481–485. DOI: 10.11883/1001-1455(2006)06-0481-05.

    GUI Y L, SUN C W, LI Q, et al. Experimental studies on dynamic tension of mental ring by electromagnetic loading [J]. Explosion and Shock Waves, 2006, 26(6): 481–485. DOI: 10.11883/1001-1455(2006)06-0481-05.
    [10]
    ZHANG H, RAVI-CHANDAR K. On the dynamics of necking and fragmentation: I: real-time and post-mortem observations in Al 6061-O [J]. International Journal of Fracture, 2006, 142(3): 183–217. DOI: 10.1007/s10704-006-9024-7.
    [11]
    王永刚, 周风华. 径向膨胀Al2O3陶瓷环动态拉伸破碎的实验研究 [J]. 固体力学学报, 2008, 29(3): 245–249. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2008.03.005.

    WANG Y G, ZHOU F H. Experimental study on the dynamic tensile framentations of Al2O3 rings under radial expansion [J]. Chinese Journal of Solid Mechanics, 2008, 29(3): 245–249. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2008.03.005.
    [12]
    郑宇轩, 周风华, 胡时胜. 一种基于SHPB的冲击膨胀环实验技术 [J]. 爆炸与冲击, 2014, 34(4): 483–488. DOI: 10.11883/1001-1455(2014)04-0483-06.

    ZHENG Y X, ZHOU F H, HU S S. An SHPB-based experimental technique for dynamic fragmentations of expanding rings [J]. Explosion and Shock Waves, 2014, 34(4): 483–488. DOI: 10.11883/1001-1455(2014)04-0483-06.
    [13]
    张佳, 郑宇轩, 周风华. 立式液压膨胀环实验技术研究 [J]. 宁波大学学报(理工版), 2017, 30(2): 35–38. DOI: 10.3969/j.issn.1001-5132.2017.02.007.

    ZHANG J, ZHENG Y X, ZHOU F H. Experimental technique for fragmentation of liquid-driven expanding ring [J]. Journal of Ningbo University (Natural Science & Engineering), 2017, 30(2): 35–38. DOI: 10.3969/j.issn.1001-5132.2017.02.007.
    [14]
    张佳. 基于SHPB的液压膨胀环实验研究[D]. 宁波: 宁波大学, 2017.
    [15]
    李天密, 张佳, 方继松, 等. PMMA膨胀环动态拉伸碎裂实验研究 [J]. 力学学报, 2018, 50(4): 820–827. DOI: 10.6052/0459-1879-18-016.

    LI T M, ZHANG J, FANG J S, et al. Experimental study of the high velocity expansion and fragmentation of PMMA rings [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(4): 820–827. DOI: 10.6052/0459-1879-18-016.
    [16]
    GRADY D E, KIPP M E. Dynamic rock fragmentation [M]. London: Academic Press Inc., 1987.
    [17]
    GLENN L A, CHUDNOVSKY A. Strain-energy effects on dynamic fragmentation [J]. Journal of Applied Physics, 1998, 59(4): 1379–1380. DOI: 10.1063/1.336532.
    [18]
    MILLER O, FREUND L B, NEEDLEMAN A. Modeling and simulation of dynamic fragmentation in brittle materials [J]. International Journal of Fracture, 1999, 96(2): 101–125. DOI: 10.1023/a:1018666317448.
    [19]
    SHENOY V B, KIM K S. Disorder effects in dynamic fragmentation of brittle materials [J]. Journal of the Mechanics and Physics of Solids, 2003, 51(11−12): 2023–2035. DOI: 10.1016/j.jmps.2003.09.010.
    [20]
    ZHOU F H, MOLINARI J F, RAMESH K T. A cohesive model based fragmentation analysis: effects of strain rate and initial defects distribution [J]. International Journal of Solids and Structures, 2005, 42(18−19): 5181–5207. DOI: 10.1016/j.ijsolstr.2005.02.009.
    [21]
    ZHOU F H, MOLINARI J F, RAMESH K T. Effects of material properties on the fragmentation of brittle materials [J]. International Journal of Fracture, 2006, 139(2): 169–196. DOI: 10.1007/s10704-006-7135-9.
    [22]
    ZHOU F H, MOLINARI J F, RAMESH K T. Characteristic fragment size distributions in dynamic fragmentation [J]. Applied Physics Letters, 2006, 88(26): 261918. DOI: 10.1063/1.2216892.
    [23]
    熊迅, 李天密, 马棋棋, 等. 石英玻璃圆环高速膨胀碎裂过程的离散元模拟 [J]. 力学学报, 2018, 50(3): 622–632. DOI: 10.6052/0459-1879-17-410.

    XIONG X, LI T M, MA Q Q, et al. Discrete element simulations of the high velocity expansion and fragmentation of quartz glass rings [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 622–632. DOI: 10.6052/0459-1879-17-410.
    [24]
    张青艳. 脆性材料在准静态和冲击压缩载荷作用下的动态碎裂过程[D]. 宁波: 宁波大学, 2019.
    [25]
    DRUGAN W J. Dynamic fragmentation of brittle materials: analytical mechanics-based models [J]. Journal of the Mechanics and Physics of Solids, 2001, 49(6): 1181–1208. DOI: 10.1016/s0022-5096(01)00002-3.
    [26]
    MAITI S, RANGASWAMY K, GEUBELLE P H. Mesoscale analysis of dynamic fragmentation of ceramics under tension [J]. Acta Materialia, 2005, 53(3): 823–834. DOI: 10.1016/j.actamat.2004.10.034.
    [27]
    郑宇轩, 陈磊, 胡时胜, 等. 韧性材料冲击拉伸碎裂中的碎片尺寸分布规律 [J]. 力学学报, 2013, 45(4): 580–587. DOI: 10.6052/0459-1879-12-338.

    ZHENG Y X, CHEN L, HU S S, et al. Characteristics of fragment size distribution of ductile materials fragmentized under high strainrate tension [J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 580–587. DOI: 10.6052/0459-1879-12-338.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (777) PDF downloads(100) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return