Volume 41 Issue 6
Jun.  2021
Turn off MathJax
Article Contents
KONG Xiangshao, WANG Zitang, KUANG Zheng, ZHOU Hu, ZHENG Cheng, WU Weiguo. Experimental study on the mitigation effects of confined-blast loading[J]. Explosion And Shock Waves, 2021, 41(6): 062901. doi: 10.11883/bzycj-2020-0193
Citation: KONG Xiangshao, WANG Zitang, KUANG Zheng, ZHOU Hu, ZHENG Cheng, WU Weiguo. Experimental study on the mitigation effects of confined-blast loading[J]. Explosion And Shock Waves, 2021, 41(6): 062901. doi: 10.11883/bzycj-2020-0193

Experimental study on the mitigation effects of confined-blast loading

doi: 10.11883/bzycj-2020-0193
  • Received Date: 2020-06-11
  • Rev Recd Date: 2020-08-31
  • Available Online: 2021-05-13
  • Publish Date: 2021-06-05
  • The blast loading from an explosion in a confined space is quite different from that in an open environment. The detonation products of TNT can be fully mixed with the surrounding air, and release additional energy through combustion effect, resulting in a significantly increase of the reflected shockwaves and quasi-static pressure in the confined space.In order to investigate the mitigation effect of different atmosphere on explosion load in confined space, the experimental tests of TNT with three different charge masses were performed in a fully confined chamber filled with air, water mist and nitrogen, respectively. The explosive load pressure, temperature and the response characteristics of blast-loaded steel plates in the confined space were analyzed by theoretical calculation and experiment. The results show that both the water mist and the nitrogen can effectively reduce the reflected shock wave, the quasi-static pressure and the temperature in the confined chamber. The average reduction rate of quasi-static pressure is 36.0% and 51.7%, and the average reduction rate of temperature is 42.6% and 40.3%, respectively. The ideal gas state equation was used to calculate the theoretical value of quasi-static pressure in the confined space filled with nitrogen. It is found that the theoretical value is slightly larger than the experimental value, which is due to the insufficient combustion of detonation products in the test. The dynamic response of blast-loaded steel plates in water mist and nitrogen atmosphere is significantly lower than that in the air condition, and the residual deformation of the steel plate at 160 g TNT in water mist and air conditions, the attenuating effect of nitrogen is better than that of water mist. It is revealed that the mechanism of the water mist and nitrogen in mitigating the confined blast load and the subsequent dynamic response of structure is restraining the energy release from the combustion of the detonation products. The conclusions can provide references for the design of anti-blast structure.
  • loading
  • [1]
    胡宏伟, 宋浦, 赵省向, 等. 有限空间内部爆炸研究进展 [J]. 含能材料, 2013, 21(4): 539–546. DOI: 10.3969/j.issn.1006-9941.2013.04.026.

    HU H W, SONG P, ZHAO S X, et al. Progressinexplosioninconfinedspace [J]. ChineseJournalofEnergeticMaterials, 2013, 21(4): 539–546. DOI: 10.3969/j.issn.1006-9941.2013.04.026.
    [2]
    WU C Q, LUKASZEWICZ M, SCHEBELLA K, et al. Experimental and numerical investigation of confined explosion in a blast chamber [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(4): 737–750. DOI: 10.1016/j.jlp.2013.02.001.
    [3]
    ZHENG C, KONG X S, WU W G, et al. The elastic-plastic dynamic response of stiffened plates under confined blast load [J]. International Journal of Impact Engineering, 2016, 95: 141–153. DOI: 10.1016/j.ijimpeng.2016.05.008.
    [4]
    CAÇOILO A, TEIXEIRA-DIAS F, MOURÃO R, et al. Blast wave propagation in survival shelters: experimental analysis and numerical modelling [J]. Shock Waves, 2018, 28(6): 1169–1183. DOI: 10.1007/s00193-018-0858-5.
    [5]
    DONAHUE L, ZHANG F, RIPLEY R C. Numerical models for afterburning of TNT detonation products in air [J]. Shock Waves, 2013, 23(6): 559–573. DOI: 10.1007/s00193-013-0467-2.
    [6]
    KONG X S, ZHOU H, ZHENG C, et al. An experimental study on the mitigation effects of fine water mist on confined-blast loading and dynamic response of steel plates [J]. International Journal of Impact Engineering, 2019, 134: 103370. DOI: 10.1016/j.ijimpeng.2019.103370.
    [7]
    ANANTH R, WILLAUER H D, FARLEY J P, et al. Effects of fine water mist on a confined blast [J]. Fire Technology, 2012, 48(3): 641–675. DOI: 10.1007/s10694-010-0156-y.
    [8]
    WILLAUER H D, ANANTH R, FARLEY J P, et al. Mitigation of TNT and Destex explosion effects using water mist [J]. Journal of Hazardous Materials, 2009, 165(1/2/3): 1068–1073. DOI: 10.1016/j.jhazmat.2008.10.130.
    [9]
    MATARADZE E, CHIKHRADZE N, BOCHORISHVILI N, et al. Experimental study of the effect of water mist location on blast overpressure attenuation in a shock tube [J]. IOP Conference Series: Earth and Environmental Science, 2017, 95(4): 042031. DOI: 10.1088/1755-1315/95/4/042031.
    [10]
    SCHWER D A, KAILASANATH K. Numerical simulations of the mitigation of unconfined explosions using water-mist [J]. Proceedings of the Combustion Institute, 2007, 31(2): 2361–2369. DOI: 10.1016/j.proci.2006.07.145.
    [11]
    ADIGA K C, WILLAUER H D, ANANTH R, et al. Implications of droplet breakup and formation of ultra fine mist in blast mitigation [J]. Fire Safety Journal, 2009, 44(3): 363–369. DOI: 10.1016/j.firesaf.2008.08.003.
    [12]
    JONES A, NOLAN P F. Discussions on the use of fine water sprays or mists for fire suppression [J]. Journal of Loss Prevention in the Process Industries, 1995, 8(1): 17–22. DOI: 10.1016/0950-4230(95)90057-V.
    [13]
    胡翔. 细水雾对冲击波的削弱作用研究[D]. 武汉: 武汉理工大学, 2018.

    HU X. Research on the mitigation of shock wave using fine water mist [D]. Wuhan: Wuhan University of Technology, 2018.
    [14]
    陈鹏宇, 侯海量, 刘贵兵, 等. 水雾对舱内装药爆炸载荷的耗散效能试验研究 [J]. 兵工学报, 2018, 39(5): 927–933. DOI: 10.3969/j.issn.1000-1093.2018.05.012.

    CHEN P Y, HOU H L, LIU G B, et al. Experimental investigation on mitigatingeffect of water mist on theexplosive shock wave inside cabin [J]. Acta Armamentarii, 2018, 39(5): 927–933. DOI: 10.3969/j.issn.1000-1093.2018.05.012.
    [15]
    孔祥韶, 况正, 郑成, 等. 舱室密闭空间中爆炸载荷燃烧增强效应试验研究 [J]. 兵工学报, 2020, 41(1): 75–85. DOI: 10.3969/j.issn.1000-1093.2020.01.009.

    KONG X S, KUANG Z, ZHENG C, et al. Experimental study of after burning enhancement effect for blast load in confined compartment space [J]. ActaArmamentarii, 2020, 41(1): 75–85. DOI: 10.3969/j.issn.1000-1093.2020.01.009.
    [16]
    金朋刚, 郭炜, 任松涛, 等. TNT密闭环境中能量释放特性研究 [J]. 爆破器材, 2014, 43(2): 10–14. DOI: 10.3969/j.issn.1001-8352.2014.02.003.

    JIN P G, GUO W, REN S T, et al. ResearchonTNTenergyrelease characteristicsinenclosedcondition [J]. ExplosiveMaterials, 2014, 43(2): 10–14. DOI: 10.3969/j.issn.1001-8352.2014.02.003.
    [17]
    金朋刚, 郭炜, 王建灵, 等. 密闭条件下TNT的爆炸压力特性 [J]. 火炸药学报, 2013, 36(3): 39–41. DOI: 10.3969/j.issn.1007-7812.2013.03.009.

    JIN P G, GUO W, WANG J L, et al. Explosion pressure characteristics of TNT under closed condition [J]. Chinese Journal of Explosives & Propellants, 2013, 36(3): 39–41. DOI: 10.3969/j.issn.1007-7812.2013.03.009.
    [18]
    张玉磊, 苏健军, 李芝绒, 等. TNT内爆炸准静态压力特性 [J]. 爆炸与冲击, 2018, 38(6): 1429–1434. DOI: 10.11883/bzycj-2017-0170.

    ZHANG Y L, SU J J, LI Z R, et al. Quasi-static pressure characteristic of TNT’s internal explosion [J]. Explosion and Shock Waves, 2018, 38(6): 1429–1434. DOI: 10.11883/bzycj-2017-0170.
    [19]
    李芝绒, 王胜强, 蒋海燕, 等. 圆筒装置内爆炸压力载荷特性实验研究 [J]. 爆炸与冲击, 2019, 39(10): 102202. DOI: 10.11883/bzycj-2018-0327.

    LI Z R, WANG S Q, JIANG H Y, et al. Experimental studies on characteristics of explosion pressure load in cylinder apparatus [J]. Explosion and Shock Waves, 2019, 39(10): 102202. DOI: 10.11883/bzycj-2018-0327.
    [20]
    FELDGUN V R, KARINSKI Y S, EDRI I, et al. Prediction of the quasi-static pressure in confined and partially confined explosions and its application to blast response simulation of flexible structures [J]. International Journal of Impact Engineering, 2016, 90: 46–60. DOI: 10.1016/j.ijimpeng.2015.12.001.
    [21]
    王等旺, 张德志, 李焰, 等. 爆炸容器内准静态气压实验研究 [J]. 兵工学报, 2012, 33(12): 1493–1497.

    WANG D W, ZHANG D Z, LI Y, et al. Experiment investigation on quasi-static pressure in explosion containment vessels [J]. Acta Armamentarii, 2012, 33(12): 1493–1497.
    [22]
    NURICK G N, MARTIN J B. Deformation of thin plates subjected to impulsive loading—a review part II: Experimental studies [J]. International Journal of Impact Engineering, 1989, 8(2): 171–186. DOI: 10.1016/0734-743X(89)90015-8.
    [23]
    YUEN S C K, NURICK G N, LANGDON G S, et al. Deformation of thin plates subjected to impulsive load: part III–an update 25 years on [J]. International Journal of Impact Engineering, 2017, 107: 108–117. DOI: 10.1016/j.ijimpeng.2016.06.010.
    [24]
    孔祥韶, 周沪, 郑成, 等. 基于饱和响应时间的封闭空间内爆炸载荷等效方法研究 [J]. 爆炸与冲击, 2019, 39(9): 092102. DOI: 10.11883/bzycj-2018-0183.

    KONG X S, ZHOU H, ZHENG C, et al. An equivalent calculation method for confined-blast load based on saturated response time [J]. Explosion and Shock Waves, 2019, 39(9): 092102. DOI: 10.11883/bzycj-2018-0183.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(13)

    Article Metrics

    Article views (562) PDF downloads(116) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return