Volume 41 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
LIAO Jiu, LI Zhigang, LIANG Fangzheng, WANG Jiaming, LIU Wanting, LI Meng, FENG Jianwen. Design and evaluation of new honeycomb configurations with high in-plane /out-of-plane loading-carrying capacity under impact[J]. Explosion And Shock Waves, 2021, 41(8): 083103. doi: 10.11883/bzycj-2020-0262
Citation: LIAO Jiu, LI Zhigang, LIANG Fangzheng, WANG Jiaming, LIU Wanting, LI Meng, FENG Jianwen. Design and evaluation of new honeycomb configurations with high in-plane /out-of-plane loading-carrying capacity under impact[J]. Explosion And Shock Waves, 2021, 41(8): 083103. doi: 10.11883/bzycj-2020-0262

Design and evaluation of new honeycomb configurations with high in-plane /out-of-plane loading-carrying capacity under impact

doi: 10.11883/bzycj-2020-0262
  • Received Date: 2020-08-03
  • Rev Recd Date: 2020-11-30
  • Available Online: 2021-07-20
  • Publish Date: 2021-08-05
  • An aluminum honeycomb is widely used in the field of impact cushioning because of its excellent performance. In order to solve the problem of large difference between the in-plane and out-of-plane load-carrying capacities of traditional honeycombs, three new configurations of honeycombs were proposed as follows: bow-shaped, staggered and folded configurations. The finite element models for these new honeycombs were established, and their deformation modes and load-carrying capacities were analyzed. The results show that under the same relative density, compared with the traditional hexagonal honeycombs, the three new configurations can reduce the difference of load-carrying capacity in in-plane and out-of-plane directions. The average in-plane/out-of-plane (I/O) ratio of loading-carrying capacity of the bow-shaped honeycombs in two coplanar directions increased by 21.3 times. For the staggered honeycomb, the load-carrying capacity of each in-plane direction is of great difference, in which the I/O ratio of the excellent direction is increased by 42 times due to its special structure. For the folded honeycomb, the I/O ratio is increased by 21.3 times on average. The research results can provide a new idea and reference for the design of honeycomb structure under multi-directional impact load.
  • loading
  • [1]
    KHAN M K, BAIG T, MIRZA S. Experimental investigation of in-plane and out-of-plane crushing of aluminum honeycomb [J]. Materials Science and Engineering: A, 2012, 539: 135–142. DOI: 10.1016/j.msea.2012.01.070.
    [2]
    荣吉利, 朱宇博, 宋乾强, 等. 异面压缩下六边形铝蜂窝平均塑性坍塌应力研究 [J]. 宇航学报, 2018, 39(3): 257–263. DOI: 10.3873/j.issn.1000-1328.2018.03.003.

    RONG J L, ZHU Y B, SONG Q Q, et al. Research on the mean plastic crushing stress of hexagonal aluminum honeycombs under out-of-plane compression [J]. Journal of Astronautics, 2018, 39(3): 257–263. DOI: 10.3873/j.issn.1000-1328.2018.03.003.
    [3]
    罗昌杰, 周安亮, 刘荣强, 等. 金属蜂窝异面压缩下平均压缩应力的理论模型 [J]. 机械工程学报, 2010, 46(18): 52–59. DOI: 10.3901/JME.2010.18.052.

    LUO C J, ZHOU A L, LIU R Q, et al. Average compressive stress constitutive equation of honeycomb metal under out-of-plane compression [J]. Journal of Mechanical Engineering, 2010, 46(18): 52–59. DOI: 10.3901/JME.2010.18.052.
    [4]
    赵国伟, 白俊青, 祁玉峰, 等. 异面冲击下金属蜂窝结构平均塑性坍塌应力模型 [J]. 振动与冲击, 2016, 35(12): 50–54. DOI: 10.13465/j.cnki.jvs.2016.12.008.

    ZHAO G W, BAI J Q, QI Y F, et al. Average plastic collapse stress model of metallic honeycomb structure under out-of-plan impact load [J]. Journal of Vibration and Shock, 2016, 35(12): 50–54. DOI: 10.13465/j.cnki.jvs.2016.12.008.
    [5]
    何彬, 李响. 一种新型组合蜂窝的抗冲击性能研究 [J]. 机械设计与制造, 2015(6): 49–51, 54. DOI: 10.19356/j.cnki.1001-3997.2015.06.013.

    HE B, LI X. Research on the impact resistance of a new type of honeycomb structure [J]. Machinery Design and Manufacture, 2015(6): 49–51, 54. DOI: 10.19356/j.cnki.1001-3997.2015.06.013.
    [6]
    杜义贤, 李涵钊, 谢黄海, 等. 具有创新拓扑构型的周期性点阵结构抗剪切性能分析 [J]. 机械设计与研究, 2016, 32(5): 83–87. DOI: 10.13952/j.cnki.jofmdr.2016.0192.

    DU Y X, LI H Z, XIE H H, et al. Shear resistance of periodic lattice structure with innovative topology configuration [J]. Machine Design and Research, 2016, 32(5): 83–87. DOI: 10.13952/j.cnki.jofmdr.2016.0192.
    [7]
    YANG X F, SUN Y X, YANG J L, et al. Out-of-plane crashworthiness analysis of bio-inspired aluminum honeycomb patterned with horseshoe mesostructure [J]. Thin-Walled Structures, 2018, 125: 1–11. DOI: 10.1016/j.tws.2018.01.014.
    [8]
    王中钢, 姚松. 加筋正六角铝蜂窝异面力学特性与筋胞厚度匹配优化 [J]. 航空材料学报, 2013, 33(3): 86–91. DOI: 10.3969/j.issn.1005-5053.2013.3.016.

    WANG Z G, YAO S. Out-of-plane mechanical properties and thickness matching optimization between rib and cell thin-wall of reinforced regular hexagon aluminum honeycomb [J]. Journal of Aeronautical Materials, 2013, 33(3): 86–91. DOI: 10.3969/j.issn.1005-5053.2013.3.016.
    [9]
    WANG Z G, SHI C, DING S S, et al. Crashworthiness of innovative hexagonal honeycomb-like structures subjected to out-of-plane compression [J]. Journal of Central South University, 2020, 27(2): 621–628. DOI: 10.1007/s11771-020-4321-2.
    [10]
    胡玲玲, 蒋玲. 胞孔构型对金属蜂窝动态力学性能的影响机理 [J]. 爆炸与冲击, 2014, 34(1): 41–46. DOI: 10.11883/1001-1455(2014)01-0041-06.

    HU L L, JIANG L. Mechanism of cell configuration affecting dynamic mechanical properties of metal honeycombs [J]. Explosion and Shock Waves, 2014, 34(1): 41–46. DOI: 10.11883/1001-1455(2014)01-0041-06.
    [11]
    胡玲玲, 陈依骊. 三角形蜂窝在面内冲击荷载下的力学性能 [J]. 振动与冲击, 2011, 30(5): 226–229, 235. DOI: 10.3969/j.issn.1000-3835.2011.05.047.

    HU L L, CHEN Y L. Mechanical properties of triangular honeycombs under in-plane impact loading [J]. Journal of Vibration and Shock, 2011, 30(5): 226–229, 235. DOI: 10.3969/j.issn.1000-3835.2011.05.047.
    [12]
    LIU Y, ZHANG X C. The influence of cell micro-topology on the in-plane dynamic crushing of honeycombs [J]. International Journal of Impact Engineering, 2009, 36(1): 98–109. DOI: 10.1016/j.ijimpeng.2008.03.001.
    [13]
    何强, 马大为, 张震东. 分层屈服强度梯度蜂窝材料的动力学性能研究 [J]. 工程力学, 2015, 32(4): 191–196. DOI: 10.6052/j.issn.1000-4750.2013.10.0986.

    HE Q, MA D W, ZHANG Z D. Research on dynamic crushing of layered yielding stress-gradient circular honeycombs [J]. Engineering Mechanics, 2015, 32(4): 191–196. DOI: 10.6052/j.issn.1000-4750.2013.10.0986.
    [14]
    HEDAYATI R, SADIGHI M, MOHAMMADI-AGHDAM M, et al. Mechanical properties of additively manufactured octagonal honeycombs [J]. Materials Science and Engineering: C, 2016, 69: 1307–1317. DOI: 10.1016/j.msec.2016.08.020.
    [15]
    THOMAS T, TIWARI G. Energy absorption and in-plane crushing behavior of aluminium reinforced honeycomb [J]. Vacuum, 2019, 166: 364–369. DOI: 10.1016/j.vacuum.2018.10.057.
    [16]
    卢子兴, 李康. 负泊松比蜂窝动态压溃行为的有限元模拟 [J]. 机械强度, 2016, 38(6): 1237–1242. DOI: 10.16579/j.issn.1001.9669.2016.06.018.

    LU Z X, LI K. Dynamic crushing of honeycombs with a negative Poisson’s ratio-a finite element study [J]. Journal of Mechanical Strength, 2016, 38(6): 1237–1242. DOI: 10.16579/j.issn.1001.9669.2016.06.018.
    [17]
    HU L L, ZHOU M Z, DENG H. Dynamic indentation of auxetic and non-auxetic honeycombs under large deformation [J]. Composite Structures, 2019, 207: 323–330. DOI: 10.1016/j.compstruct.2018.09.066.
    [18]
    马瑞君, 王玉涛, 李萌, 等. 基于Miura折纸的蜂窝材料共面缓冲性能研究 [J]. 载人航天, 2020, 26(1): 48–55. DOI: 10.16329/j.cnki.zrht.2020.01.007.

    MA R J, WANG Y T, LI M, et al. Research on in-plane buffer performance of honeycomb material based on Miura pattern [J]. Manned Spaceflight, 2020, 26(1): 48–55. DOI: 10.16329/j.cnki.zrht.2020.01.007.
    [19]
    ZHAI J Y, LIU Y F, GENG X Y, et al. Energy absorption of pre-folded honeycomb under in-plane dynamic loading [J]. Thin-Walled Structures, 2019, 145: 106356. DOI: 10.1016/j.tws.2019.106356.
    [20]
    谭思博, 侯兵, 李玉龙, 等. 基体材料对铝蜂窝动态强化特性的影响 [J]. 爆炸与冲击, 2015, 35(1): 16–21. DOI: 10.11883/1001-1455(2015)01-0016-06.

    TAN S B, HOU B, LI Y L, et al. Effect of base materials on the dynamic enhancement of aluminium honeycombs [J]. Explosion and Shock Waves, 2015, 35(1): 16–21. DOI: 10.11883/1001-1455(2015)01-0016-06.
    [21]
    李萌, 刘荣强, 郭宏伟, 等. 腿式着陆器用不同拓扑结构金属蜂窝吸能特性优化设计 [J]. 振动与冲击, 2013, 32(21): 7–14. DOI: 10.3969/j.issn.1000-3835.2013.21.002.

    LI M, LIU R Q, GUO H W, et al. Crashworthiness optimization of different topological structures of metal honeycomb used in a legged-typed lander [J]. Journal of Vibration and Shock, 2013, 32(21): 7–14. DOI: 10.3969/j.issn.1000-3835.2013.21.002.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(22)  / Tables(3)

    Article Metrics

    Article views (570) PDF downloads(75) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return