Volume 41 Issue 5
May  2021
Turn off MathJax
Article Contents
WANG Wei, DU Hongmian, FAN Jinbiao, XUE Peikang. Measurement and calculation technology of temperature compensation of explosion flame based on infrared radiation[J]. Explosion And Shock Waves, 2021, 41(5): 054101. doi: 10.11883/bzycj-2020-0302
Citation: WANG Wei, DU Hongmian, FAN Jinbiao, XUE Peikang. Measurement and calculation technology of temperature compensation of explosion flame based on infrared radiation[J]. Explosion And Shock Waves, 2021, 41(5): 054101. doi: 10.11883/bzycj-2020-0302

Measurement and calculation technology of temperature compensation of explosion flame based on infrared radiation

doi: 10.11883/bzycj-2020-0302
  • Received Date: 2020-08-27
  • Rev Recd Date: 2021-04-02
  • Publish Date: 2021-05-05
  • In testing explosion flame temperature with radiation thermometry, there is relatively great deviation of empirical value of flame emissivity from flame combustion mechanism. Meanwhile, the distance of measure point from the flame and ambient temperature and humidity also cause attenuation of thermal radiation to different extent, affecting the accuracy of measurement of explosion flame’s temperature. With focuses on foregoing two problems and based on atmospheric radiation theory and the law of optics propagation, a model of radiation path attenuation compensation was deduced in accordance with the functional relation among explosion flame’s radiance, digital output value of thermal imager and explosion flame’s temperature, followed by obtainment of relevant parameters i.e. system responsivity in the model from radiometric calibration of thermal imager; then, the applicability of the gray body hypothesis of TNT explosion flame was confirmed by analyzing the composition of the products of TNT explosion flame. Therefore, a function model of explosion flame’s dynamic average emissivity was deduced concerning onsite atmospheric transmittance, digital output value of thermal imager and explosion flame’s temperature measured by the colorimetric thermometer in accordance with the expression of explosion flame’s radiance; finally, based on the receiver function of thermal imager’s effective radiation, a joint temperature compensation evaluation method, which combines radiation path compensation and dynamic emissivity, was proposed for joint inversion of explosion flame’s temperature at the explosion site and the range of temperature error of inversion was obtained through comparison of measured result with explosion flame’s surface temperature measured by colorimetric thermometer. The test result suggests the error of explosion flame’s temperature measured with the proposed compensation model is reduced to 11.292%−59.077% from previous 55.699%−89.847% before compensation, thus effectively improving the accuracy of measurement of transient flame temperature of explosion at external field and providing a means for accurate infrared thermography-based evaluation of thermal effect in explosion field.
  • loading
  • [1]
    ZHANG Y C, WANG Z K, FU X B, et al. An experimental method for improving temperature measurement accuracy of infrared thermal imager [J]. Infrared Physics & Technology, 2019, 102: 103020. DOI: 10.1016/j.infrared.2019.103020.
    [2]
    SHAO L C, ZHOU Z J, CHEN L P, et al. Study of an improved two-colour method integrated with the emissivity ratio model and its application to air-and oxy-fuel flames in industrial furnaces [J]. Measurement, 2018, 123: 54–61. DOI: 10.1016/j.measurement.2018.03.024.
    [3]
    杨词银, 张建萍, 曹立华. 基于大气透过率比例校正的目标辐射测量 [J]. 光学 精密工程, 2012, 20(7): 1626–1635. DOI: 10.3788/OPE.20122007.1626.

    YANG C Y, ZHANG J P, CAO L H. Infrared radiation measurement based on proportional corrected atmospheric transmittance [J]. Optics and Precision Engineering, 2012, 20(7): 1626–1635. DOI: 10.3788/OPE.20122007.1626.
    [4]
    赵晨阳, 冯浩, 黄晓敏, 等. 红外测温技术在爆炸场温度测试中的精度研究 [J]. 红外技术, 2014, 36(8): 676–679. DOI: 10.11846/j.issn.1001_8891.201408015.

    ZHAO C Y, FENG H, HUANG X M, et al. Research on the precision of the infrared temperature-measuring technology in explosion fields temperature test [J]. Infrared Technology, 2014, 36(8): 676–679. DOI: 10.11846/j.issn.1001_8891.201408015.
    [5]
    MITROFANOV V V, PINAEV A V, ZHDAN S A. Calculations of detonation waves in gas-droplet systems [J]. Acta Astronautica, 1979, 6(3−4): 281–296. DOI: 10.1016/0094-5765(79)90099-7.
    [6]
    李云红, 孙晓刚, 原桂彬. 红外热像仪精确测温技术 [J]. 光学 精密工程, 2007, 15(9): 1336–1341. DOI: 10.3321/j.issn:1004-924x.2007.09.005.

    LI Y H, SUN X G, YUAN G B. Accurate measuring temperature with infrared thermal imager [J]. Optics and Precision Engineering, 2007, 15(9): 1336–1341. DOI: 10.3321/j.issn:1004-924x.2007.09.005.
    [7]
    WANG L Y, DU H M, XU H. Compensation method for infrared temperature measurement of explosive fireball [J]. Thermochimica Acta, 2019, 680: 178342. DOI: 10.1016/j.tca.2019.178342.
    [8]
    安连生, 李林, 李全臣. 应用光学[M]. 3版. 北京: 北京理工大学出版社, 2002: 112−113.
    [9]
    ZHANG Z L, SUN W M, SHI L W, et al. Multi-wavelength pyrometry for temperature measurement in gas flames [C] // Proceedings of 2012 International Conference on Measurement, Information and Control. Harbin: IEEE, 2012: 198−201. DOI: 10.1109/MIC.2012.6273255.
    [10]
    DE RIS J. Fire radiation—A review [J]. Symposium (International) on Combustion, 1979, 17(1): 1003–1016. DOI: 10.1016/S0082-0784(79)80097-1.
    [11]
    SIEGEL R, HOWELL J R. Thermal radiation heat transfer [M]. 4th ed. Washington: Hemisphere Pub Corp, 1981.
    [12]
    GOROSHIN S, FROST D L, LEVINE J, et al. Optical pyrometry of fireballs of metalized explosives [J]. Propellants Explosives Pyrotechnics, 2006, 31(3): 169–181. DOI: 10.1002/prep.200600024.
    [13]
    LYNCH P, KRIER H, GLUMAC N. Emissivity of aluminum-oxide particle clouds: application to pyrometry of explosive fireballs [J]. Journal of Thermophysics and Heat Transfer, 2010, 24(2): 301–308. DOI: 10.2514/1.43853.
    [14]
    刘丹丹, 黄印博, 魏合理, 等. 我国典型地区大气透过率的计算分析 [J]. 大气与环境光学学报, 2013, 8(4): 262–270. DOI: 10.3969/j.issn.1673-6141.2013.04.003.

    LIU D D, HUANG Y B, WEI H L, et al. Atmospheric transmittance calculation in typical regions of China [J]. Journal of Atmospheric and Environmental Optics, 2013, 8(4): 262–270. DOI: 10.3969/j.issn.1673-6141.2013.04.003.
    [15]
    郭立红, 郭汉洲, 杨词银, 等. 利用大气修正因子提高目标红外辐射特性测量精度 [J]. 光学 精密工程, 2016, 24(8): 1871–1877. DOI: 10.3788/OPE.20162408.1871.

    GUO L H, GUO H Z, YANG C Y, et al. Improvement of radiation measurement precision for target by using atmosphere-corrected coefficients [J]. Optics and Precision Engineering, 2016, 24(8): 1871–1877. DOI: 10.3788/OPE.20162408.1871.
    [16]
    ORLOFF L, DE RIS J. Froude modeling of pool fires [J]. Symposium (International) on Combustion, 1982, 19(1): 885–895. DOI: 10.1016/S0082-0784(82)80264-6.
    [17]
    齐文娟. 发射率对红外测温精度的影响[D]. 长春: 长春理工大学, 2006: 27−32. DOI: 10.7666/d.y930659.
    [18]
    WANG P F, LIU N A, HARTL K, et al. Measurement of the flow field of fire whirl [J]. Fire Technology, 2016, 52: 263–272. DOI: 10.1007/s10694-015-0511-0.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (344) PDF downloads(99) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return