Volume 41 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
ZHAO Ke, JIANG Nan, JIA Yongsheng, YAO Yingkang, ZHU Bin, ZHOU Chuanbo. Dynamic failure mechanism of gas pipeline with flange joint under blasting seismic wave[J]. Explosion And Shock Waves, 2021, 41(9): 095101. doi: 10.11883/bzycj-2020-0320
Citation: ZHAO Ke, JIANG Nan, JIA Yongsheng, YAO Yingkang, ZHU Bin, ZHOU Chuanbo. Dynamic failure mechanism of gas pipeline with flange joint under blasting seismic wave[J]. Explosion And Shock Waves, 2021, 41(9): 095101. doi: 10.11883/bzycj-2020-0320

Dynamic failure mechanism of gas pipeline with flange joint under blasting seismic wave

doi: 10.11883/bzycj-2020-0320
  • Received Date: 2020-09-10
  • Rev Recd Date: 2020-12-23
  • Available Online: 2021-08-13
  • Publish Date: 2021-09-14
  • In the process of blasting and excavation of urban subways, controlling the impact of blasting vibration on adjacent pipelines is critical. Based on the characteristics of directly buried gas pipelines in Wuhan and the full-scale direct-buried gas pipeline blasting seismicexperiment, the dynamic finite element numerical calculation software LS-DYNA was used to establish gas pipeline without joints and flange gas pipeline models under different blasting source distances. The effects of blasting seismic wave’s dynamic response characteristics of flanged gas pipeline were analyzed. The research results show that the strain of pipeline section is mainly axial tensile strain, supplemented by circumferential strain. The peak particle velocity of pipeline without joints and flange pipes and the ground surface increase with the decrease of the distance from the blasting source under different blasting conditions. Along the pipeline axis, the peak vibration velocity of the pipeline without joints and the ground surface decreases along the two ends with the central section of the pipe as the symmetry plane. The peak particle velocity of the flange pipeline gradually increases from two sides to the middle but suddenly decreases at the flange joint. There is an obvious stress concentration at the flange interface. The flange joint is the key point of pipeline under blasting earthquake. The peak effective stress of the bolt, the axial pressure of the gasket, the peak effective stress of the flange, and the flange deflection angle decrease with the increase of the explosion source distance. The deflection angle of the flanged pipeline has a corresponding relationship with the peak vibration velocity of the ground surface. The control vibration speed of 13.82 cm/s on the surface directly above the center of the flanged gas pipeline is used as the safety control value of the adjacent gas pipeline under blasting engineering.
  • loading
  • [1]
    管晓明, 张良, 王利民, 等. 隧道近距下穿管线的爆破振动特征及安全标准 [J]. 中南大学学报(自然科学版), 2019, 50(11): 2870–2885. DOI: 10.11817/j.issn.1672-7207.2019.11.026.

    GUAN X M, ZHANG L, WANG L M, et al. Blasting vibration characteristics and safety standard of pipeline passed down by tunnel in short distance [J]. Journal of Central South University (Science and Technology), 2019, 50(11): 2870–2885. DOI: 10.11817/j.issn.1672-7207.2019.11.026.
    [2]
    夏宇磬, 蒋楠, 姚颖康, 等. 粉质黏土层预埋承插式混凝土管道对爆破振动的动力响应 [J]. 爆炸与冲击, 2020, 40(4): 043302. DOI: 10.11883/bzycj-2019-0207.

    XIA Y Q, JIANG N, YAO Y K, et al. Dynamic responses of a concrete pipeline with bell-and-spigot joints buried in a silty clay layer to blasting seismic waves [J]. Explosion and Shock Waves, 2020, 40(4): 043302. DOI: 10.11883/bzycj-2019-0207.
    [3]
    ASHFORD S A, JUIRNARONGRIT T. Response of single piles and pipelines in liquefaction–induced lateral spreads using controlled blasting [J]. Earthquake Engineering and Engineering Vibration, 2002, 1(2): 181–193. DOI: 10.1007/s11803-002-0064-3.
    [4]
    ABEDI A S, HATAF N, GHAHRAMANI A. Analytical solution of the dynamic response of buried pipelines under blast wave [J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 88: 301–306. DOI: 10.1016/j.ijrmms.2016.07.014.
    [5]
    KOURETZIS G P, BOUCKOVALAS G D, GANTES C J. Analytical calculation of blast-induced strains to buried pipelines [J]. International Journal of Impact Engineering, 2007, 34(10): 1683–1704. DOI: 10.1016/j.ijimpeng.2006.08.008.
    [6]
    LIU X B, ZHANG H, XIA M Y, et al. Mechanical response of buried polyethylene pipelines under excavation load during pavement construction [J]. Engineering Failure Analysis, 2018, 90: 355–370. DOI: 10.1016/j.engfailanal.2018.03.027.
    [7]
    张震, 周传波, 路世伟, 等. 爆破振动作用下邻近埋地混凝土管道动力响应特性 [J]. 哈尔滨工业大学学报, 2017, 46(9): 79–84. DOI: 10.11918/j.issn.0367-6234.201611089.

    ZHANG Z, ZHOU C B, LU S W, et al. Dynamic response characteristic of adjacent buried concrete pipeline subjected to blasting vibration [J]. Journal of Harbin Institute of Technology, 2017, 46(9): 79–84. DOI: 10.11918/j.issn.0367-6234.201611089.
    [8]
    JIANG N, GAO T, ZHOU C B, et al. Effect of excavation blasting vibration on adjacent buried gas pipeline in a metro tunnel [J]. Tunnelling and Underground Space Technology, 2018, 81: 590–601. DOI: 10.1016/j.tust.2018.08.022.
    [9]
    高坛, 周传波, 蒋楠, 等. 基坑开挖爆破下邻近管道振动速度安全阈值研究 [J]. 安全与环境学报, 2017, 17(6): 2191–2195. DOI: 10.13637/j.issn.1009-6094.2017.06.029.

    GAO T, ZHOU C B, JIANG N, et al. Study on the vibration velocity threshold of the adjacent pipeline under the blasting excavation of the foundation pit [J]. Journal of Safety and Environment, 2017, 17(6): 2191–2195. DOI: 10.13637/j.issn.1009-6094.2017.06.029.
    [10]
    屈若枫, 徐光黎, 王金峰, 等. 武汉地区典型软土物理力学指标间的相关性研究 [J]. 岩土工程学报, 2014, 36(S2): 113–119. DOI: 10.11779/CJGE2014S2019.

    QU R F, XU G L, WANG J F, et al. Correlations of physical and mechanical properties of typical soft soils in Wuhan [J]. Chinese Journal of Geotechnical Engineering, 2014, 36(S2): 113–119. DOI: 10.11779/CJGE2014S2019.
    [11]
    时党勇, 李裕春, 张胜民. 基于ANSYS/LS-DYNA 8.1进行显式动力分析[M]. 北京: 清华大学出版社, 2005: 156−158.
    [12]
    王先军, 陈明祥, 常晓林, 等. Drucker-Prager系列屈服准则在稳定分析中的应用研究 [J]. 岩土力学, 2009, 30(12): 3733–3738. DOI: 10.3969/j.issn.1000-7598.2009.12.030.

    WANG X J, CHEN M X, CHANG X L, et al. Studies of application of Drucker-Prager yield criteria to stability analysis [J]. Rock and Soil Mechanics, 2009, 30(12): 3733–3738. DOI: 10.3969/j.issn.1000-7598.2009.12.030.
    [13]
    MOKHTARI M, NIA A A. A parametric study on the mechanical performance of buried X65 steel pipelines under subsurface detonation [J]. Archives of Civil and Mechanical Engineering, 2015, 15(3): 668–679. DOI: 10.1016/j.acme.2014.12.013.
    [14]
    郑爽英, 杨立中. 隧道爆破地震下输气管道动力响应数值试验 [J]. 西南交通大学学报, 2017, 52(2): 264–271. DOI: 10.3969/j.issn.0258-2724.2017.02.008.

    ZHENG S Y, YANG L Z. Numerical experiments of dynamic response of buried gas pipeline under the action of seismic waves induced by tunnel blasting [J]. Journal of Southwest Jiaotong University, 2017, 52(2): 264–271. DOI: 10.3969/j.issn.0258-2724.2017.02.008.
    [15]
    朱斌, 蒋楠, 贾永胜, 等. 下穿燃气管道爆破振动效应现场试验研究 [J]. 岩石力学与工程学报, 2019, 38(12): 2582–2592. DOI: 10.13722/j.cnki.jrme.2019.0183.

    ZHU B, JIANG N, JIA Y S, et al. Field experiment on blasting vibration effect of underpass gas pipeline [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(12): 2582–2592. DOI: 10.13722/j.cnki.jrme.2019.0183.
    [16]
    中国机械工业联合会. 整体铸铁法兰: GB/T 17241.6-2008 [S]. 北京: 中国标准出版社, 2009.
    [17]
    王志文, 蔡仁良. 化工容器设计[M]. 北京: 化学工业出版社, 2005: 42−45.
    [18]
    中华人民共和国国家市场监督管理总局, 中国国家标准化管理委员会. 水及燃气用球墨铸铁管、管件和附件: GB/T 13295−2019 [S]. 北京: 中国标准出版社, 2019.
    [19]
    MATHAN G, PRASAD N S. Evaluation of effective material properties of spiral wound gasket through homogenization [J]. International Journal of Pressure Vessels and Piping, 2010, 87(12): 704–713. DOI: 10.1016/j.ijpvp.2010.10.003.
    [20]
    蒋国庆, 马斌, 陈万华. 螺栓法兰连接结构有限元模型参数确定方法 [J]. 国防科技大学学报, 2020, 42(4): 51–56. DOI: 10.11887/j.cn.202004009.

    JIANG G Q, MA B, CHEN W H. Parameter determination method for bolted flange’s finite element model [J]. Journal of National University of Defense Technology, 2020, 42(4): 51–56. DOI: 10.11887/j.cn.202004009.
    [21]
    蔡仁良, 顾伯勤, 宋鹏云. 过程装备密封技术[M]. 北京: 化学工业出版社, 2006: 51−52.
    [22]
    ASME锅炉及压力容器委员会压力容器分委员会. ASME锅炉及压力容器规范: 2010版. 第8卷. 第1册, 压力容器建造规则[M]. 北京: 中国石化出版社, 2011: 415.
    [23]
    陆晓峰, 沈轶. 高温法兰密封接头的可靠性分析 [J]. 压力容器, 2007, 24(9): 20–24. DOI: 10.3969/j.issn.1001-4837.2007.09.005.

    LU X F, SHEN Y. Reliability analysis on bolted flanged joints at elevated temperature [J]. Pressure Vessel Technology, 2007, 24(9): 20–24. DOI: 10.3969/j.issn.1001-4837.2007.09.005.
    [24]
    王和慧, 卢均臣, 关凯书, 等. 带接管组合法兰的强度和密封有限元分析 [J]. 压力容器, 2012, 29(2): 22–29. DOI: 10.3969/j.issn.1001-4837.2012.02.005.

    WANG H H, LU J C, GUAN K S, et al. Strength and seal FE analysis of combined flanges with a pipe [J]. Pressure Vessel Technology, 2012, 29(2): 22–29. DOI: 10.3969/j.issn.1001-4837.2012.02.005.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(4)

    Article Metrics

    Article views (469) PDF downloads(88) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return