Volume 41 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
SHENG Zhenxin, LIU Jianhu, ZHANG Xianpi, GAO Tao, CHEN Jiangtao, YANG Jing. On an array-sensor technology for measuring bubble jet load generated by underwater explosion[J]. Explosion And Shock Waves, 2021, 41(3): 031405. doi: 10.11883/bzycj-2020-0346
Citation: SHENG Zhenxin, LIU Jianhu, ZHANG Xianpi, GAO Tao, CHEN Jiangtao, YANG Jing. On an array-sensor technology for measuring bubble jet load generated by underwater explosion[J]. Explosion And Shock Waves, 2021, 41(3): 031405. doi: 10.11883/bzycj-2020-0346

On an array-sensor technology for measuring bubble jet load generated by underwater explosion

doi: 10.11883/bzycj-2020-0346
  • Received Date: 2020-09-22
  • Rev Recd Date: 2021-01-19
  • Available Online: 2021-03-05
  • Publish Date: 2021-03-10
  • There are two difficulties in the measurement of underwater explosion bubble jet load: (1) the bubble jet load is a non-uniform surface load, but its radius of action is only 1/10 of the maximum radius of the bubble, the density of sensitive elements which is limited to the size and installation space is low, so it is difficult to accurately obtain the spatial distribution of bubble jet load; (2) the mechanical environment of the sensor is very complex when measuring the bubble jet load, so the sensor is easy to be damaged, which makes it impossible to obtain the complete time history. Therefore, it is difficult to obtain the spatiotemporal distribution characteristics of bubble jet load by existing measurement methods. In view of this, an array sensor was designed. Several small sensitive elements were processed on a piece of PVDF piezoelectric film by special technology. The size of sensitive elements is 5 mm×5 mm, arranged in 8×8 matrix, and the density of sensitive elements is ≥1 cm−2. At the same time, the sensor protection device was designed on the basis of revealing the damage mechanism of the sensor. The underwater explosion test of small equivalent explosive was carried out in a small observation tank, and the spatiotemporal distribution characteristics of bubble jet load were measured by using array sensor. The results show that: (1) the designed protection device can ensure that the sensor will not be damaged in the process of measuring the bubble jet load; (2) the load in the bubble jet center is the highest and decrease to the surrounding gradually. The peak pressure of the bubble jet load is about 35.6 MPa, which is about 1.16 times of the shock wave peak pressure. The array measurement technology can provide technical support for the in-depth study of underwater explosion bubble jet.
  • loading
  • [1]
    李健, 潘力, 林贤坤, 等. 近自由面水下爆炸气泡与结构相互作用数值计算研究 [J]. 振动与冲击, 2015, 34(18): 13–18. DOI: 10.13465/j.cnki.jvs.2015.18.003.

    LI J, PAN L, LIN X K, et al. Numerical study on interaction between bubble and structure near free surface in underwater explosion [J]. Journal of Vibration and Shock, 2015, 34(18): 13–18. DOI: 10.13465/j.cnki.jvs.2015.18.003.
    [2]
    朱枫. 水下爆炸气泡脉动与近边界射流特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2011: 2−12.

    ZHU F. Research on characteristics of bubble pulsation and jetting near boundary induced by underwater explosion [D]. Harbin: Harbin Engineering University, 2011: 2−12.
    [3]
    崔杰. 近场水下爆炸气泡载荷及对结构毁伤试验研究[D]. 哈尔滨: 哈尔滨工程大学, 2013: 2−17.

    CUI J. Experimental study on underwater explosion bubble loads and damage on the structure nearby [D]. Harbin: Harbin Engineering University, 2013: 2−17.
    [4]
    黄超. 柱形装药气泡动态特性及射流冲击毁伤研究[D]. 哈尔滨: 哈尔滨工程大学, 2011: 2−21.

    HUANG C. Research on dynamics of cylindrical charge underwater explosion bubble and damage of jet impact [D]. Harbin: Harbin Engineering University, 2011: 2−21.
    [5]
    李健, 林贤坤, 荣吉利, 等. 近壁面水下爆炸气泡运动的数值计算研究 [J]. 振动与冲击, 2014, 33(15): 200–205. DOI: 10.13465/j.cnki.jvs.2014.15.035.

    LI J, LIN X K, RONG J L, et al. Dynamic behavior of a bubble near a rigid wall in underwater explosion [J]. Journal of Vibration and Shock, 2014, 33(15): 200–205. DOI: 10.13465/j.cnki.jvs.2014.15.035.
    [6]
    崔杰, 张阿漫, 郭君, 等. 舱段结构在气泡射流作用下的毁伤效果 [J]. 爆炸与冲击, 2012, 32(4): 355–361. DOI: 10.11883/1001-1455(2012)04-0355-07.

    CUI J, ZHANG A M, GUO J, et al. Damage effect of cabin structure subjected to bubble jet [J]. Explosion and Shock Waves, 2012, 32(4): 355–361. DOI: 10.11883/1001-1455(2012)04-0355-07.
    [7]
    汪斌, 张远平, 王彦平. 水中爆炸气泡与水底边界相互作用的水射流现象 [J]. 爆炸与冲击, 2011, 31(3): 250–255. DOI: 10.11883/1001-1455(2011)03-0250-06.

    WANG B, ZHANG Y P, WANG Y P. Water jet phenomena induced by the interaction between underwater explosion bubbles and water bottom boundaries [J]. Explosion and Shock Waves, 2011, 31(3): 250–255. DOI: 10.11883/1001-1455(2011)03-0250-06.
    [8]
    黄超, 汪斌, 张远平, 等. 柱形装药自由场水中爆炸气泡的射流特性 [J]. 爆炸与冲击, 2011, 31(3): 263–267. DOI: 10.11883/1001-1455(2011)03-0263-05.

    HUANG C, WANG B, ZHANG Y P, et al. Behaviors of bubble jets induced by underwater explosion of cylindrical charges under free-field conditions [J]. Explosion and Shock Waves, 2011, 31(3): 263–267. DOI: 10.11883/1001-1455(2011)03-0263-05.
    [9]
    TOMITA Y, SHIMA A. Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse [J]. Journal of Fluid Mechanics, 1986, 169: 535–564. DOI: 10.1017/S0022112086000745.
    [10]
    TONG R P, SCHIFFERS W P, SHAW S J, et al. The role of ‘splashing’ in the collapse of a laser-generated cavity near a rigid boundary [J]. Journal of Fluid Mechanics, 1999, 380: 339–361. DOI: 10.1017/S0022112098003589.
    [11]
    SCHIFFERS W P, SHAW S J, EMMONY D C. Acoustical and optical tracking of the collapse of a laser-generated cavitation bubble near a solid boundary [J]. Ultrasonics, 1998, 36(1−5): 559–563. DOI: 10.1016/S0041-624X(97)00110-8.
    [12]
    WANG Y C, CHEN Y W. Application of piezoelectric PVDF film to the measurement of impulsive forces generated by cavitation bubble collapse near a solid boundary [J]. Experimental Thermal and Fluid Science, 2007, 32(2): 403–414. DOI: 10.1016/j.expthermflusci.2007.05.003.
    [13]
    JAYAPRAKASH A, HSIAO C T, CHAHINE G. Numerical and experimental study of the interaction of a spark-generated bubble and a vertical wall [C]//Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition. Vancouver: ASME, 2010.
    [14]
    JAYAPRAKASH A, HSIAO C T, CHAHINE G. Numerical and experimental study of the interaction of a spark-generated bubble and a vertical wall [J]. Journal of Fluids Engineering, 2012, 134(3): 031301. DOI: 10.1115/1.4005688.
    [15]
    牟金磊, 朱锡, 黄晓明, 等. 水下爆炸气泡射流现象的试验研究 [J]. 哈尔滨工程大学学报, 2010, 31(2): 154–158. DOI: 10.3969/j.issn.1006-7043.2010.02.004.

    MU J L, ZHU X, HUANG X M, et al. Experimental study of jets formed by bubbles from underwater explosions [J]. Journal of Harbin Engineering University, 2010, 31(2): 154–158. DOI: 10.3969/j.issn.1006-7043.2010.02.004.
    [16]
    范志强. PVDF压力测量特性与水下爆炸近场多孔金属夹芯板动力响应的研究 [D]. 合肥: 中国科学技术大学, 2015: 55−73.

    FAN Z Q. Characteristics of pressure measurements using PVDF gauge and the dynamic response of metallic sandwich panels subjected to proximity underwater explosion [D]. Hefei: University of Science and Technology of China, 2015: 55−73.
    [17]
    LUO J, XU W J, DENG J, et al. Experimental study on the impact characteristics of cavitation bubble collapse on a wall [J]. Water, 2018, 10(9): 1262. DOI: 10.3390/w10091262.
    [18]
    王海坤, 刘建湖, 毛海斌, 等. 水下爆炸气泡及其射流的光电联合测量研究 [J]. 防护工程, 2015, 37(4): 36–42.

    WANG H K, LIU J H, MAO H B, et al. Photoelectric combined measurements of underwater explosion bubble and jet [J]. Protective Engineering, 2015, 37(4): 36–42.
    [19]
    陈莹玉. 水下近场爆炸时不同结构形式的壁压与毁伤特性试验研究 [D]. 哈尔滨: 哈尔滨工程大学, 2019: 49−79.

    CHEN Y Y. Experimental study on wall pressure and damage of defferent structures to near-field underwater explosion [D]. Harbin: Harbin Engineering University, 2019: 49−79.
    [20]
    YU K H, KWON T G, YUN M J, et al. Distributed flexible tactile sensor using piezoelectric film [C] // Proceedings of the 15th Triennial World Congress. Barcelona: IFAC, 2002.
    [21]
    杨敏, 陈洪, 李明海. 柔性阵列式压力传感器的发展现状简介 [J]. 航天器环境工程, 2009, 26(S1): 112–115. DOI: 10.3969/j.issn.1673-1379.2009.z1.029.

    YANG M, CHEN H, LI M H. Brief introduction to the development of flexible array pressure sensor [J]. Spacecraft Environment Engineering, 2009, 26(S1): 112–115. DOI: 10.3969/j.issn.1673-1379.2009.z1.029.
    [22]
    LEE Y C, YU J M, HUANG S W. Fabrication and characterization of a PVDF hydrophone array transducer [J]. Key Engineering Material, 2004, 270−273: 1406–1413. DOI: 10.4028/www.scientific.net/KEM.270-273.1406.
    [23]
    WANG Y C, HUANG C H, LEE Y C, et al. Development of a PVDF sensor array for measurement of the impulsive pressure generated by cavitation bubble collapse [J]. Experiments in Fluids, 2006, 41(3): 365–373. DOI: 10.1007/s00348-006-0135-8.
    [24]
    舒方法, 姜寿山, 张欣, 等. PVDF压电薄膜在足底压力测量中的应用 [J]. 压电与声光, 2008, 30(4): 514–516. DOI: 10.3969/j.issn.1004-2474.2008.04.041.

    SHU F F, JIANG S S, ZHANG X, et al. Application of PVDF piezoelectric-film to foot-pressure measurement [J]. Piezoelectrics & Acoustooptics, 2008, 30(4): 514–516. DOI: 10.3969/j.issn.1004-2474.2008.04.041.
    [25]
    卢凯, 黄文, 刘思祎, 等. 基于PVDF的柔性压力传感器阵列的制备及仿真研究 [J]. 电子元件与材料, 2016, 35(3): 40–43. DOI: 10.14106/j.cnki.1001-2028.2016.03.010.

    LU K, HUANG W, LIU S Y, et al. Preparation and simulation for flexible pressure sensor array based on poly (vinylidene fluoride) film [J]. Electronic Components and Materials, 2016, 35(3): 40–43. DOI: 10.14106/j.cnki.1001-2028.2016.03.010.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views (628) PDF downloads(107) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return