Volume 41 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
YUE Junzheng, HONG Tao, WU Xianqian, HUANG Chenguang. A modified reaction model of aluminum dust detonation[J]. Explosion And Shock Waves, 2021, 41(8): 082101. doi: 10.11883/bzycj-2020-0349
Citation: YUE Junzheng, HONG Tao, WU Xianqian, HUANG Chenguang. A modified reaction model of aluminum dust detonation[J]. Explosion And Shock Waves, 2021, 41(8): 082101. doi: 10.11883/bzycj-2020-0349

A modified reaction model of aluminum dust detonation

doi: 10.11883/bzycj-2020-0349
  • Received Date: 2020-09-23
  • Rev Recd Date: 2020-11-24
  • Available Online: 2021-07-27
  • Publish Date: 2021-08-05
  • The reaction model of aluminum particles is the key to successfully simulate the two-phase detonation of aluminum suspensions. In this study, by considering the endothermic decomposition reaction of the aluminum oxide (Al2O3) product at high temperature, a diffusion combustion model for the aluminum particles was improved and was incorporated into the homemade numerical code for 3D simulation of gas-solid two-phase detonation. The numerical program is based on the theory of two-phase flows, both gaseous and solid phases are assumed to be continuous media with inter-phase transfer of mass, momentum and energy. The system of 3D governing equations is solved in Cartesian x-y-z coordinates using an Eulerian grid, the numerical simulation code uses an explicit finite difference scheme based on the space-time conservation element and solution element (CE/SE) method, and the fourth order Runge-Kutta method is used to solve the source terms of the governing equations. In addition, the stability is assured by the Courant-Friedrichs-Lewy (CFL) criterion. Program parallelization is realized based on the message-passing-interface (MPI) technique, and the reliability of the program is demonstrated by simulating the shock tube problem successfully. Based on the program and the improved reaction model for the aluminum particles, numerical simulations for detonations of Al/air mixtures and Al/O2 mixtures were performed, respectively, the simulated results of the steady detonation wave speeds are in agreement with the experimental results or the literature value, with the error of less than 5.5%, which demonstrate the validity of the improved reaction model for Al suspensions detonation in different oxidizing atmosphere. Moreover, the detonation parameters and the distributions of the physical quantities around the detonation wave are analyzed, and the influence law of the reaction model on the detonation wave structure is obtained.
  • loading
  • [1]
    LIU X L, ZHANG Q. Influence of turbulent flow on the explosion parameters of micro- and nano-aluminum powder-air mixtures [J]. Journal of Hazardous Materials, 2015, 299: 603–617. DOI: 10.1016/j.jhazmat.2015.07.068.
    [2]
    VEYSSIERE B, KHASAINOV B A, BRIAND A. Investigation of detonation initiation in aluminium suspensions [J]. Shock Waves, 2008, 18(4): 307–315. DOI: 10.1007/s00193-008-0136-z.
    [3]
    FEDOROV A V, KHMEL T A. Numerical simulation of formation of cellular heterogeneous detonation of aluminum particles in oxygen [J]. Combustion, Explosion, and Shock Waves, 2005, 41(4): 435–448. DOI: 10.1007/s10573-005-0054-7.
    [4]
    BECKSTEAD M W. Correlating aluminum burning times [J]. Combustion, Explosion and Shock Waves, 2005, 41(5): 533–546. DOI: 10.1007/s10573-005-0067-2.
    [5]
    TANGUAY V, GOROSHIN S, HIGGINS A J, et al. Aluminum particle combustion in high-speed detonation products [J]. Combustion Science and Technology, 2009, 181(4): 670–693. DOI: 10.1080/00102200802643430.
    [6]
    BAZYN T, KRIER H, GLUMAC N. Evidence for the transition from the diffusion-limit in aluminum particle combustion [J]. Proceedings of the Combustion Institute, 2007, 31(2): 2021–2028. DOI: 10.1016/j.proci.2006.07.161.
    [7]
    GLORIAN J, GALLIER S, CATOIRE L. On the role of heterogeneous reactions in aluminum combustion [J]. Combustion and Flame, 2016, 168: 378–392. DOI: 10.1016/j.combustflame.2016.01.022.
    [8]
    ZHANG F, GERRARD K, RIPLEY R C. Reaction mechanism of aluminum-particle-air detonation [J]. Journal of Propulsion and Power, 2009, 25(4): 845–858. DOI: 10.2514/1.41707.
    [9]
    BRIAND A, VEYSSIERE B, KHASAINOV B A. Modelling of detonation cellular structure in aluminium suspensions [J]. Shock Waves, 2010, 20(6): 521–529. DOI: 10.1007/s00193-010-0288-5.
    [10]
    BALAKRISHNAN K. Diffusion- and kinetics-limited combustion of an explosively dispersed aluminum particle [J]. Journal of Propulsion and Power, 2014, 30(2): 522–526. DOI: 10.2514/1.B35059.
    [11]
    KWON Y S, GROMOV A A, ILYIN A P, et al. The mechanism of combustion of superfine aluminum powders [J]. Combustion and Flame, 2003, 133(4): 385–391. DOI: 10.1016/S0010-2180(03)00024-5.
    [12]
    NIGMATULIN R I. Methods used in mechanics of continuous media for a description of multiphase mixtures [J]. Journal of Applied Mathematics and Mechanics, 1970, 34(6): 1097–1112. DOI: 10.1016/0021-8928(70)90174-7.
    [13]
    HAYNES W M. Handbook of chemistry and physics [M]. Florida: CRC Press, 2014.
    [14]
    LEVITAS V I, PANTOYA M L, CHAUHAN G, et al. Effect of the alumina shell on the melting temperature depression for aluminum nanoparticles [J]. The Journal of Physical Chemistry C, 2009, 113(32): 14088–14096. DOI: 10.1021/jp902317m.
    [15]
    洪滔, 秦承森. 铝颗粒激波点火机制初探 [J]. 爆炸与冲击, 2003, 23(4): 295–299.

    HONG T, QIN C S. Mechanism of shock wave ignition of aluminum particle [J]. Explosion and Shock Waves, 2003, 23(4): 295–299.
    [16]
    PRICE E W. Combustion of metalized propellants [M]// KUO K K. Fundamentals of Solid-Propellant Combustion. New York: American Institute of Aeronautics and Astronautics, 1984: 479−513. DOI: 10.2514/5.9781600865671.0479.0513.
    [17]
    STEINBERG T A, WILSON D B, BENZ F. The combustion phase of burning metals [J]. Combustion and Flame, 1992, 91(2): 200–208. DOI: 10.1016/0010-2180(92)90100-4.
    [18]
    GLASSMAN I. Combustion of metals revisited thermodynamically [C]// Proceedings of the Eastern States Section of the Combustion Institute. Princeton: The Combustion Institute, 1993: 17−26.
    [19]
    沈维道, 童钧耕. 工程热力学[M]. 4版. 北京: 高等教育出版社, 2007.

    SHEN W D, TONG J G. Engineering thermodynamics [M]. 4th ed. Beijing: Higher Education Press, 2007.
    [20]
    TORO E F. Riemann solvers and numerical methods for fluid dynamics: a practical introduction [M]. Berlin Heidelberg: Springer, 2009. DOI: 10.1007/b79761.
    [21]
    TULIS A J, SELMAN J R. Detonation tube studies of aluminum particles dispersed in air [J]. Symposium (International) on Combustion, 1982, 19(1): 655–663. DOI: 10.1016/s0082-0784(82)80240-3.
    [22]
    LIU L J, ZHANG Q, SHEN S L, et al. Evaluation of detonation characteristics of aluminum/JP-10/air mixtures at stoichiometric concentrations [J]. Fuel, 2016, 169: 41–49. DOI: 10.1016/j.fuel.2015.11.090.
    [23]
    BENKIEWICZ K, HAYASHI K. Two-dimensional numerical simulations of multi-headed detonations in oxygen-aluminum mixtures using an adaptive mesh refinement [J]. Shock Waves, 2003, 12(5): 385–402. DOI: 10.1007/s00193-002-0169-7.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (554) PDF downloads(131) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return