Volume 41 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
ZENG Fan, XIAO Guizhong, FENG Xiaowei, HUANG Chao, TIAN Rong. A damage assessment method for masonry structures subjected to long duration blast loading[J]. Explosion And Shock Waves, 2021, 41(10): 105101. doi: 10.11883/bzycj-2020-0399
Citation: ZENG Fan, XIAO Guizhong, FENG Xiaowei, HUANG Chao, TIAN Rong. A damage assessment method for masonry structures subjected to long duration blast loading[J]. Explosion And Shock Waves, 2021, 41(10): 105101. doi: 10.11883/bzycj-2020-0399

A damage assessment method for masonry structures subjected to long duration blast loading

doi: 10.11883/bzycj-2020-0399
  • Received Date: 2020-10-26
  • Rev Recd Date: 2021-05-20
  • Available Online: 2021-09-16
  • Publish Date: 2021-10-13
  • With frequent blast accidents of hundreds of tons equivalent explosion, increasing attention has been paid to the damage assessment and anti-explosion safety of building structures. Some evaluation methods give procedures to obtain the pressure-impulse diagrams on the structural components. However, to the best knowledge of authors, how to evaluate the damage degree of building structures as a whole still remains open. In this paper, a weighted component damage method is proposed to evaluate the damage of structures subjected to long duration blast loading. The method, as its name suggests, is to define a damage degree of the whole structure by adding the damage degrees of all components in a weighted manner. The weight of a component, which represents its contribution to the anti-explosion safety, is defined by a strain energy based method. In order to verify the effectiveness of the proposed method, a high-resolution numerical simulation has been performed on a two-story masonry structure subjected to blast loading with a positive phase duration of 100 ms using a self-developed parallel finite element program for shock wave structure destruction simulation. A support rotation criterion based on the flexural deformation model of components is adopted to determine the damage degree of load-bearing components such as brick walls, columns and floors. The damage degree of the whole structure is then obtained using the proposed weighted component damage method. Upon the overpressure-damage curve is obtained, interpolations was carried out to obtain the threshold values of the overpressure corresponding to the six predefined damage levels. The numerical predicted overpressure values were compared with those from literature data. It was shown that the relative error of the overpressure is between −16.9% and 26.2%, and the effectiveness of the proposed method was verified. The proposed assessment approach can be used to obtain the pressure-impulse diagrams of masonry structures and provide effective measures in protecting structures against blast loads.
  • loading
  • [1]
    WESEVICH J W, OSWALD C J. Empirical based concrete masonry pressure-impulse diagrams for varying degrees of damage [M]. New York: American Society of Civil Engineers, 2005: 207−218. DOI: 10.1061/40753(171)207.
    [2]
    MA G W, SHI H J, SHU D W. p-I diagram method for combined failure modes of rigid-plastic beams [J]. International Journal of Impact Engineering, 2007, 34(6): 1081–1094. DOI: 10.1016/j.ijimpeng.2006.05.001.
    [3]
    SHI Y C, HAO H, LI Z X. Numerical derivation of pressure–impulse diagrams for prediction of RC column damage to blast loads [J]. International Journal of Impact Engineering, 2008, 35(11): 1213–1227. DOI: 10.1016/j.ijimpeng.2007.09.001.
    [4]
    陆新征. 工程地震灾变模拟: 从高层建筑到城市区域[M]. 北京: 科学出版社, 2015: 250−257.
    [5]
    李翼祺, 马素贞. 爆炸力学[M]. 北京: 科学出版社, 1992: 299−301.
    [6]
    CCPS. Guidelines for evaluating the characteristics of vapor cloud explosions, flash fires, and BLEVEs [M]. New York: Center for Chemical Process Safety of American Institute of Chemical Engineers, 1994.
    [7]
    DING Y, SONG X R, ZHU H T. Probabilistic progressive collapse analysis of steel frame structures against blast loads [J]. Engineering Structures, 2017, 147: 679–691. DOI: 10.1016/j.engstruct.2017.05.063.
    [8]
    陶俊林, 李丹, 刘彤, 等. 内爆作用下钢筋混凝土框架结构及承重件的毁伤与评估[M]. 北京: 科学出版社, 2017: 142−143.
    [9]
    US Department of Defense. Structures to resist the effects of accidental explosions: UFC 3-340-02 [S]. Washington, USA: Department of Defense, 2008.
    [10]
    ASCE. Blast protection of buildings [M]. American Society of Civil Engineers, 2011: 7−8. DOI: 10.1061/9780784411889.
    [11]
    田荣. 爆炸毁伤效应评估 [C] // 第十二届全国爆炸力学学术会议. 浙江桐乡, 2018.
    [12]
    曾繁, 刘娜. 强冲击波结构毁伤等级评估软件JUST-PANDA及应用 [C] // 第十二届全国爆炸力学学术会议. 浙江桐乡, 2018.
    [13]
    MO Z Y, ZHANG A Q, CAO X L, et al. JASMIN: a parallel software infrastructure for scientific computing [J]. Frontiers of Computer Science in China, 2010, 4(4): 480–488. DOI: 10.1007/s11704-010-0120-5.
    [14]
    LIU Q K, MO Z Y, ZHANG A Q, et al. JAUMIN: a programming framework for large-scale numerical simulation on unstructured meshes [J]. CCF Transactions on High Performance Computing, 2019, 1(1): 35–48. DOI: 10.1007/s42514-019-00001-z.
    [15]
    KUMAR V, KARTIK K V, IQBAL M A. Experimental and numerical investigation of reinforced concrete slabs under blast loading [J]. Engineering Structures, 2020, 206: 110125. DOI: 10.1016/j.engstruct.2019.110125.
    [16]
    ANTHOINE A. Derivation of the in-plane elastic characteristics of masonry through homogenization theory [J]. International Journal of Solids and Structures, 1995, 32(2): 137–163. DOI: 10.1016/0020-7683(94)00140-R.
    [17]
    WEI X Y, HAO H. Numerical derivation of homogenized dynamic masonry material properties with strain rate effects [J]. International Journal of Impact Engineering, 2009, 36(3): 522–536. DOI: 10.1016/j.ijimpeng.2008.02.005.
    [18]
    WU C Q, HAO H. Derivation of 3D masonry properties using numerical homogenization technique [J]. International Journal for Numerical Methods in Engineering, 2006, 66(11): 1717–1737. DOI: 10.1002/nme.1537.
    [19]
    ZUCCHINI A, LOURENÇO P B. A micro-mechanical model for the homogenisation of masonry [J]. International Journal of Solids and Structures, 2002, 39(12): 3233–3255. DOI: 10.1016/S0020-7683(02)00230-5.
    [20]
    熊益波, 陈剑杰, 胡永乐, 等. 混凝土Johnson-Holmquist本构模型关键参数研究 [J]. 工程力学, 2012, 29(1): 121–127.

    XIONG Y B, CHEN J J, HU Y L, et al. Study on the key parameters of the Johnson-Holmquist constitutive model for concrete [J]. Engineering Mechanics, 2012, 29(1): 121–127.
    [21]
    肖丽, 曹小林, 王华维, 等. 激光聚变数值模拟中的大规模数据可视分析 [J]. 计算机辅助设计与图形学学报, 2014, 26(5): 675–686.

    XIAO L, CAO X L, WANG H W, et al. Large-scale data visual analysis for numerical simulation of laser fusion [J]. Journal of Computer-Aided Design & Computer Graphics, 2014, 26(5): 675–686.
    [22]
    MILLS C A. The design of concrete structures to resist explosions and weapon effects [C] // Proceedings of the 1st International Conference on Concrete for Hazard Protections. Edinburgh, UK, 1987.
    [23]
    BRASIE W C, SIMPSON D W. Guidelines for estimating damage explosion [J]. Journal of Loss Prevention in the Process Industries, 1968, 2: 91–101.
    [24]
    PERRY R H, GREEN D W, MALONEY J O. Perry’s chemical engineer’s handbook [M]. 7th ed. New York: McGraw-Hill, 1997.
    [25]
    CROWL D A. Understanding explosions [M]. New York: Center for Chemical Process Safety of the American Institute of Chemical Engineers, 2003.
    [26]
    KINNEY G F, GRAHAM K J. Explosive shocks in air [M]. 2nd ed. New York: Springer, 1985.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (606) PDF downloads(137) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return