Volume 41 Issue 4
Apr.  2021
Turn off MathJax
Article Contents
CHEN Haihua, ZHANG Xianfeng, LIU Chuang, LIN Kunfu, XIONG Wei, TAN Mengting. Research progress on impact deformation behavior of high-entropy alloys[J]. Explosion And Shock Waves, 2021, 41(4): 041402. doi: 10.11883/bzycj-2020-0414
Citation: CHEN Haihua, ZHANG Xianfeng, LIU Chuang, LIN Kunfu, XIONG Wei, TAN Mengting. Research progress on impact deformation behavior of high-entropy alloys[J]. Explosion And Shock Waves, 2021, 41(4): 041402. doi: 10.11883/bzycj-2020-0414

Research progress on impact deformation behavior of high-entropy alloys

doi: 10.11883/bzycj-2020-0414
  • Received Date: 2020-11-11
  • Rev Recd Date: 2021-01-21
  • Available Online: 2021-04-14
  • Publish Date: 2021-04-14
  • As a kind of multi-principal component alloy, high-entropy alloy breaks through the design idea of traditional single-principal component alloys, and shows excellent properties different from traditional alloy. It has a good application prospect in extreme environments including high temperature, high pressure and high strain rate. Analyzing the impact deformation characteristics of high entropy alloy from micro, meso and macro scale is of great importance for its engineering application, which includes the influences of the element effect, macrostructure and high temperature and high strain rate conditions on the impact damage evolution, microstructure change and impact deformation evolution process of high entropy alloys. In terms of the effect of elements on the mechanical properties of high entropy alloys, the effect of the great difference between the atomic radius of metal and nonmetal elements on the impact deformation is mainly discussed. According to the micro scale structure, the high entropy microstructure of single-phase alloy can be divided into face centered cubic (FCC) structure with better plasticity and body centered cubic (BCC) and hexagonal close-packed (HCP) structure with higher strength. The microstructure of multiphase high entropy alloy is the combination of these three single-phase structures and other phases. The cooperative deformation of multiphase high entropy alloy ensures it to obtain more excellent comprehensive mechanical properties. High temperature and high strain rate as external conditions exhibit similar effect on the high-entropy alloy and other metals. High temperature promotes material softening, while the high strain rate promotes material hardening. Some high entropy alloys have better mechanical properties at high temperature. According to the impact characteristics of high-entropy alloy, the applications of high-entropy alloy in the field of national defense engineering impact are summarized. The existing problems in the research of impact deformation behavior of high-entropy alloy are analyzed, and the applications of high-entropy alloy in extreme conditions are prospected.
  • loading
  • [1]
    YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Advanced Engineering Materials, 2004, 6(5): 299–303. DOI: 10.1002/adem.200300567.
    [2]
    CANTOR B, CHANG I T H, KNIGHT P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Materials Science and Engineering: A, 2004, 375: 213–218. DOI: 10.1016/j.msea.2003.10.257.
    [3]
    张勇, 陈明彪, 杨潇. 先进高熵合金技术[M]. 北京: 化学工业出版社, 2019: 5−6.
    [4]
    李建国, 黄瑞瑞, 张倩, 等. 高熵合金的力学性能及变形行为研究进展 [J]. 力学学报, 2020, 52(2): 333–359. DOI: 10.6052/0459-1879-20-009.

    LI J G, HUANG R R, ZHANG Q, et al. Mechnical properties and behaviors of high entropy alloys [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 333–359. DOI: 10.6052/0459-1879-20-009.
    [5]
    李甲, 冯慧, 陈阳, 等. 高熵合金强韧化理论建模与模拟研究进展 [J]. 固体力学学报, 2020, 41(2): 93–108. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2020.009.

    LI J, FENG H, CHEN Y, et al. Progress in theoretical modeling and simulation on strengthening and toughening of high-entropy alloys [J]. Chinese Journal of Solid Mechanics, 2020, 41(2): 93–108. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2020.009.
    [6]
    吕昭平, 雷智锋, 黄海龙, 等. 高熵合金的变形行为及强韧化 [J]. 金属学报, 2018, 54(11): 1553–1566. DOI: 10.11900/0412.1961.2018.00372.

    LÜ Z P, LEI Z F, HUANG H L, et al. Deformation behavior and toughening of high-entropy alloys [J]. Acta Metallurgica Sinica, 2018, 54(11): 1553–1566. DOI: 10.11900/0412.1961.2018.00372.
    [7]
    DING Q Q, ZHANG Y, CHEN X, et al. Tuning element distribution, structure and properties by composition in high-entropy alloys [J]. Nature, 2019, 574(7777): 223–227. DOI: 10.1038/s41586-019-1617-1.
    [8]
    WANG F L, BALBUS G H, XU S Z, et al. Multiplicity of dislocation pathways in a refractory multiprincipal element alloy [J]. Science, 2020, 370(6512): 95–101. DOI: 10.1126/science.aba3722.
    [9]
    ZHANG Z R, ZHANG H, TANG Y, et al. Microstructure, mechanical properties and energetic characteristics of a novel high-entropy alloy HfZrTiTa0.53 [J]. Materials & Design, 2017, 133: 435–443. DOI: 10.1016/j.matdes.2017.08.022.
    [10]
    SENKOV O N, WILKS G B, MIRACLE D B, et al. Refractory high-entropy alloys [J]. Intermetallics, 2010, 18(9): 1758–1765. DOI: 10.1016/j.intermet.2010.05.014.
    [11]
    SENKOV O N, WILKS G B, SCOTT J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19(5): 698–706. DOI: 10.1016/j.intermet.2011.01.004.
    [12]
    CHEN H, KAUFFMANN A, LAUBE S, et al. Contribution of lattice distortion to solid solution strengthening in a series of refractory high entropy alloys [J]. Metallurgical and Materials Transactions A, 2018, 49(3): 772–781. DOI: 10.1007/s11661-017-4386-1.
    [13]
    刘张全, 乔珺威. 难熔高熵合金的研究进展 [J]. 中国材料进展, 2019, 38(8): 767–774. DOI: 10.7502/j.issn.1674-3962.201812016.

    LIU Z Q, QIAO J W. Research progress of refractory high-entropy alloys [J]. Materials China, 2019, 38(8): 767–774. DOI: 10.7502/j.issn.1674-3962.201812016.
    [14]
    GALI A, GEORGE E P. Tensile properties of high- and medium-entropy alloys [J]. Intermetallics, 2013, 39: 74–78. DOI: 10.1016/j.intermet.2013.03.018.
    [15]
    GEORGE E P, CURTIN W A, TASAN C C. High entropy alloys: a focused review of mechanical properties and deformation mechanisms [J]. Acta Materialia, 2020, 188: 435–474. DOI: 10.1016/j.actamat.2019.12.015.
    [16]
    ZHANG T W, MA S G, ZHAO D, et al. Simultaneous enhancement of strength and ductility in a NiCoCrFe high-entropy alloy upon dynamic tension: micromechanism and constitutive modeling [J]. International Journal of Plasticity, 2020, 124: 226–246. DOI: 10.1016/j.ijplas.2019.08.013.
    [17]
    WANG W R, WANG W L, WANG S C, et al. Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys [J]. Intermetallics, 2012, 26: 44–51. DOI: 10.1016/j.intermet.2012.03.005.
    [18]
    王璐, 马胜国, 赵聃, 等. AlCoCrFeNi高熵合金在冲击载荷下的动态力学性能 [J]. 热加工工艺, 2018, 47(24): 86–89. DOI: 10.14158/j.cnki.1001-3814.2018.24.021.

    WANG L, MA S G, ZHAO D, et al. Dynamic mechanical properties of AlCoCrFeNi high-entropy alloys under impact load [J]. Hot Working Technology, 2018, 47(24): 86–89. DOI: 10.14158/j.cnki.1001-3814.2018.24.021.
    [19]
    黄小霞, 汪冰峰, 刘彬. FeCoNiCrMn高熵合金动态力学性能与微观结构 [J]. 矿冶工程, 2018, 38(3): 136–139. DOI: 10.3969/j.issn.0253-6099.2018.03.033.

    HUANG X X, WANG B F, LIU B. Dynamic mechanical properties and microstructure of FeCoNiCrMn high entropy alloy [J]. Mining and Metallurgical Engineering, 2018, 38(3): 136–139. DOI: 10.3969/j.issn.0253-6099.2018.03.033.
    [20]
    JIANG Z J, HE J Y, WANG H Y, et al. Shock compression response of high entropy alloys [J]. Materials Research Letters, 2016, 4(4): 226–232. DOI: 10.1080/21663831.2016.1191554.
    [21]
    WANG Z W, BAKER I, CAI Z H, et al. The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys [J]. Acta Materialia, 2016, 120: 228–239. DOI: 10.1016/j.actamat.2016.08.072.
    [22]
    STEPANOV N D, SHAYSULTANOV D G, CHERNICHENKO R S, et al. Effect of thermomechanical processing on microstructure and mechanical properties of the carbon-containing CoCrFeNiMn high entropy alloy [J]. Journal of Alloys and Compounds, 2017, 693: 394–405. DOI: 10.1016/j.jallcom.2016.09.208.
    [23]
    FAN J T, ZHANG L J, YU P F, et al. Improved the microstructure and mechanical properties of AlFeCoNi high-entropy alloy by carbon addition [J]. Materials Science and Engineering: A, 2018, 728: 30–39. DOI: 10.1016/j.msea.2018.05.013.
    [24]
    XIE Y C, CHENG H, TANG Q H, et al. Effects of N addition on microstructure and mechanical properties of CoCrFeNiMn high entropy alloy produced by mechanical alloying and vacuum hot pressing sintering [J]. Intermetallics, 2018, 93: 228–234. DOI: 10.1016/j.intermet.2017.09.013.
    [25]
    CHEN Y W, LI Y K, CHENG X W, et al. Interstitial strengthening of refractory ZrTiHfNb0.5Ta0.5O x (x= 0.05, 0.1, 0.2) high-entropy alloys [J]. Materials Letters, 2018, 228: 145–147. DOI: 10.1016/j.matlet.2018.05.123.
    [26]
    PARK J M, MOON J, BAE J W, et al. Strain rate effects of dynamic compressive deformation on mechanical properties and microstructure of CoCrFeMnNi high-entropy alloy [J]. Materials Science and Engineering: A, 2018, 719: 155–163. DOI: 10.1016/j.msea.2018.02.031.
    [27]
    LU Y P, DONG Y, GUO S, et al. A promising new class of high-temperature alloys: eutectic high-entropy alloys [J]. Scientific Reports, 2014, 4: 6200. DOI: 10.1038/srep06200.
    [28]
    LI Z M, PRADEEP K G, DENG Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534(7606): 227–230. DOI: 10.1038/nature17981.
    [29]
    LI Z M, TASAN C C, PRADEEP K G, et al. A TRIP-assisted dual-phase high-entropy alloy: grain size and phase fraction effects on deformation behavior [J]. Acta Materialia, 2017, 131: 323–335. DOI: 10.1016/j.actamat.2017.03.069.
    [30]
    WANG M M, TASAN C C, PONGE D, et al. Nanolaminate transformation-induced plasticity-twinning-induced plasticity steel with dynamic strain partitioning and enhanced damage resistance [J]. Acta Materialia, 2015, 85: 216–228. DOI: 10.1016/j.actamat.2014.11.010.
    [31]
    TASAN C C, DIEHL M, YAN D, et al. An overview of dual-phase steels: advances in microstructure-oriented processing and micromechanically guided design [J]. Annual Review of Materials Research, 2015, 45: 391–431. DOI: 10.1146/annurev-matsci-070214-021103.
    [32]
    GAO X Z, LU Y P, ZHANG B, et al. Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy [J]. Acta Materialia, 2017, 141: 59–66. DOI: 10.1016/j.actamat.2017.07.041.
    [33]
    GHASSEMI-ARMAKI H, MAAß R, BHAT S P, et al. Deformation response of ferrite and martensite in a dual-phase steel [J]. Acta Materialia, 2014, 62: 197–211. DOI: 10.1016/j.actamat.2013.10.001.
    [34]
    CONNER R D, DANDLIKER R B, SCRUGGS V, et al. Dynamic deformation behavior of tungsten-fiber/metallic-glass matrix composites [J]. International Journal of Impact Engineering, 2000, 24(5): 435–444. DOI: 10.1016/S0734-743X(99)00176-1.
    [35]
    CHOI-YIM H, LEE S Y, CONNER R D. Mechanical behavior of Mo and Ta wire-reinforced bulk metallic glass composites [J]. Scripta Materialia, 2008, 58(9): 763–766. DOI: 10.1016/j.scriptamat.2007.12.037.
    [36]
    CHOI-YIM H, CONNER R D, SZUECS F, et al. Quasistatic and dynamic deformation of tungsten reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass matrix composites [J]. Scripta Materialia, 2001, 45(9): 1039–1045. DOI: 10.1016/S1359-6462(01)01134-4.
    [37]
    LI H, SUBHASH G, KECSKES L J, et al. Mechanical behavior of tungsten preform reinforced bulk metallic glass composites [J]. Materials Science and Engineering: A, 2005, 403(1): 134–143. DOI: 10.1016/j.msea.2005.04.053.
    [38]
    陈小伟, 李继承, 张方举, 等. 钨纤维增强金属玻璃复合材料弹穿甲钢靶的实验研究 [J]. 爆炸与冲击, 2012, 32(4): 346–354. DOI: 10.11883/1001-1455(2012)04-0346-09.

    CHEN X W, LI J C, ZHANG F J, et al. Experimental research on the penetration of tungsten-fiber/metallic glass-matrix composite material penetrator into steel target [J]. Explosion and Shock Waves, 2012, 32(4): 346–354. DOI: 10.11883/1001-1455(2012)04-0346-09.
    [39]
    CHEN X W, WEI L M, LI J C. Experimental research on the long rod penetration of tungsten-fiber/Zr-based metallic glass matrix composite into Q235 steel target [J]. International Journal of Impact Engineering, 2015, 79: 102–116. DOI: 10.1016/j.ijimpeng.2014.11.007.
    [40]
    李继承, 陈小伟, 黄风雷. 块体金属玻璃压缩变形和破坏特性的有限元模拟研究 [J]. 固体力学学报, 2016, 37(S1): 56–64.

    LI J C, CHEN X W, HUANG F L. FEM simulation on deformation and failure in bulk metallic glasses under quasistatic compression [J]. Chinese Journal of Solid Mechanics, 2016, 37(S1): 56–64.
    [41]
    李继承. 金属玻璃及其复合材料的剪切变形与破坏[D]. 北京: 北京理工大学, 2016: 149−188.
    [42]
    WANG B F, FU A, HUANG X X, et al. Mechanical properties and microstructure of the CoCrFeMnNi high entropy alloy under high strain rate compression [J]. Journal of Materials Engineering and Performance, 2016, 25(7): 2985–2992. DOI: 10.1007/s11665-016-2105-5.
    [43]
    ZHANG T W, JIAO Z M, WANG Z H, et al. Dynamic deformation behaviors and constitutive relations of an AlCoCr1.5Fe1.5NiTi0.5 high-entropy alloy [J]. Scripta Materialia, 2017, 136: 15–19. DOI: 10.1016/j.scriptamat.2017.03.039.
    [44]
    MEYERS M A. Dynamic behavior of materials[M]. New York: John Wiley & Sons Inc., 1994: 296-378.
    [45]
    ARMSTRONG R W, LI Q Z. Dislocation mechanics of high-rate deformations [J]. Metallurgical and Materials Transactions A, 2015, 46(10): 4438–4453. DOI: 10.1007/s11661-015-2779-6.
    [46]
    DIRRAS G, COUQUE H, LILENSTEN L, et al. Mechanical behavior and microstructure of Ti20Hf20Zr20Ta20Nb20 high-entropy alloy loaded under quasi-static and dynamic compression conditions [J]. Materials Characterization, 2016, 111: 106–113. DOI: 10.1016/j.matchar.2015.11.018.
    [47]
    COUQUE H. The use of the direct impact Hopkinson pressure bar technique to describe thermally activated and viscous regimes of metallic materials [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 372(2023): 20130218. DOI: 10.1098/rsta.2013.0218.
    [48]
    KUMAR N, YING Q, NIE X, et al. High strain-rate compressive deformation behavior of the Al0.1CrFeCoNi high entropy alloy [J]. Materials & Design, 2015, 86: 598–602. DOI: 10.1016/j.matdes.2015.07.161.
    [49]
    GUO W G, NEMAT-NASSER S. Flow stress of Nitronic-50 stainless steel over a wide range of strain rates and temperatures [J]. Mechanics of Materials, 2006, 38(11): 1090–1103. DOI: 10.1016/j.mechmat.2006.01.004.
    [50]
    李玉龙, 索涛, 郭伟国, 等. 确定材料在高温高应变率下动态性能的Hopkinson杆系统 [J]. 爆炸与冲击, 2005, 25(6): 487–492. DOI: 10.11883/1001-1455(2005)06-0487-06.

    LI Y L, SUO T, GUO W G, et al. Determination of dynamic behavior of materials at elevated temperatures and high strain rates using Hopkinson bar [J]. Explosion and Shock Waves, 2005, 25(6): 487–492. DOI: 10.11883/1001-1455(2005)06-0487-06.
    [51]
    林建平, 王立影, 田浩彬, 等. 超高强度钢热流变行为 [J]. 塑性工程学报, 2009, 16(2): 180–183.

    LIN J P, WANG L Y, TIAN H B, et al. Research on hot forming behavior of ultrahigh strength steel [J]. Journal of Plasticity Engineering, 2009, 16(2): 180–183.
    [52]
    SENKOV O N, SCOTT J M, SENKOVA S V, et al. Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy [J]. Journal of Materials Science, 2012, 47(9): 4062–4074. DOI: 10.1007/s10853-012-6260-2.
    [53]
    JEONG H T, PARK H K, PARK K, et al. High-temperature deformation mechanisms and processing maps of equiatomic CoCrFeMnNi high-entropy alloy [J]. Materials Science and Engineering: A, 2019, 756: 528–537. DOI: 10.1016/j.msea.2019.04.057.
    [54]
    ZHAO Y L, YANG T, LI Y R, et al. Superior high-temperature properties and deformation-induced planar faults in a novel L12-strengthened high-entropy alloy [J]. Acta Materialia, 2020, 188: 517–527. DOI: 10.1016/j.actamat.2020.02.028.
    [55]
    李春玲, 马跃, 郝家苗, 等. 难熔高熵合金的研究进展及应用 [J]. 精密成形工程, 2017, 9(6): 117–124. DOI: 10.3969/j.issn.1674-6457.2017.06.022.

    LI C L, MA Y, HAO J M, et al. Research progress and application of refractory high entropy alloys [J]. Journal of Netshape Forming Engineering, 2017, 9(6): 117–124. DOI: 10.3969/j.issn.1674-6457.2017.06.022.
    [56]
    张周然. HfZrTiTax高熵合金含能结构材料的组织结构与力学性能研究[D]. 长沙: 国防科技大学, 2017: 80−85.

    ZHANG Z R. Microstructure and mechanical properties of HfZrTiTax high-entropy alloys energetic structural materials [D]. Changsha: National University of Defense Technology, 2017: 80−85.
    [57]
    陈海华, 张先锋, 熊玮, 等. WFeNiMo高熵合金动态力学行为及侵彻性能研究 [J]. 力学学报, 2020, 52(5): 1443–1453. DOI: 10.6052/0459-1879-20-166.

    CHEN H H, ZHANG X F, XIONG W, et al. Dynamic mechanical behavior and penetration performance [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1443–1453. DOI: 10.6052/0459-1879-20-166.
    [58]
    LIU X F, TIAN Z L, ZHANG X F, et al. “Self-sharpening” tungsten high-entropy alloy [J]. Acta Materialia, 2020, 186: 257–266. DOI: 10.1016/j.actamat.2020.01.005.
    [59]
    CHERECHEŞ T, LIXANDRU P, GEANTĂ V, et al. Layered structures analysis, with high entropy alloys, for ballistic protection [J]. Applied Mechanics and Materials, 2015, 809/810: 724–729. DOI: 10.4028/www.scientific.net/AMM.809-810.724.
    [60]
    GEANTĂ V, VOICULESCU I, STEFĂNOIU R, et al. Dynamic impact behaviour of high entropy alloys used in the military domain [J]. IOP Conference Series: Materials Science and Engineering, 2018, 374: 012041. DOI: 10.1088/1757-899X/374/1/012041.
    [61]
    MUSKERI S, CHOUDHURI D, JANNOTTI P A, et al. Ballistic impact response of Al0.1CoCrFeNi high-entropy alloy [J]. Advanced Engineering Materials, 2020, 22(6): 2000124. DOI: 10.1002/adem.202000124.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(38)

    Article Metrics

    Article views (1835) PDF downloads(286) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return