Volume 41 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
ZHAO Sihan, GUO Weiguo, WANG Fan, LI Xinxin, CHEN Longyang, LI Xiaolong, WANG Ruifeng. On a bidirectional bending Hopkinson tension test method[J]. Explosion And Shock Waves, 2021, 41(11): 114101. doi: 10.11883/bzycj-2020-0427
Citation: ZHAO Sihan, GUO Weiguo, WANG Fan, LI Xinxin, CHEN Longyang, LI Xiaolong, WANG Ruifeng. On a bidirectional bending Hopkinson tension test method[J]. Explosion And Shock Waves, 2021, 41(11): 114101. doi: 10.11883/bzycj-2020-0427

On a bidirectional bending Hopkinson tension test method

doi: 10.11883/bzycj-2020-0427
  • Received Date: 2020-11-24
  • Rev Recd Date: 2021-07-19
  • Available Online: 2021-11-02
  • Publish Date: 2021-11-23
  • In order to achieve bidirectional high strain rate dynamic tension of materials or structures, based on the elastic stress wave propagation theory in bending bars and the principle of the Hopkinson bar, a symmetrical herringbone bending bar was designed. The designed structure can generate and transmit two compression waves at the same time, and convert them into two-way tension waves propagating along the tension bar through the contact adapters. In order to understand the influence of the herringbone bending bar geometric configuration on the propagation of elastic compression waves, the dynamic analysis and ABAQUS finite element analysis (FEA) were carried out for the device. The study shows that after the square compression elastic wave propagates through the bending bar, the platform section of the square wave will incline in high front and low back, and as the bending angle increases, the slope is larger, and the waveform distortion caused by the large curvature rod is more serious. In order to realize the platform segment of the square wave or trapezoidal wave, the tapered impact bar is optimized so that it can be used to generate load waves with low front and high back to offset the tilt distortion in the transmission. In the end, to verify the feasibility and effect of the bidirectional dynamic tensile loading device based on the bidirectional bending Hopkinson bar, a small verification device was built. The results show that the device realized bidirectional tension loading for the pulse width of about 54 μs with good synchronization, the time difference between the starting point of the two waves was less than 2.5 μs, and the amplitude difference was less than 6×10−6. The bidirectional tensile test was carried out on the 2024 aluminum alloy samples, and the good test results were obtained. This confirms that the proposed method can be used for bidirectional dynamic tension and lays the foundation for the expansion of the device to biaxial tensile loading.
  • loading
  • [1]
    TAYLOR A S, WEISS M, HILDITCH T, et al. Formability of cryo-rolled aluminium in uniaxial and biaxial tension [J]. Materials Science and Engineering: A, 2012, 555: 148–153. DOI: 10.1016/j.msea.2012.06.044.
    [2]
    NAMAZU T, FUJII M, FUJII H, et al. Thermal annealing effect on elastic-plastic behavior of Al-Si-Cu structural films under uniaxial and biaxial tension [J]. Journal of Microelectromechanical Systems, 2013, 22(6): 1414–1427. DOI: 10.1109/JMEMS.2013.2257985.
    [3]
    HANNON A, TIERNAN P. A review of planar biaxial tensile test systems for sheet metal [J]. Journal of Materials Processing Technology, 2008, 198(1−3): 1–13. DOI: 10.1016/j.jmatprotec.2007.10.015.
    [4]
    MAKINDE A, THIBODEAU L, NEALE K W. Development of an apparatus for biaxial testing using cruciform specimens [J]. Experimental Mechanics, 1992, 32(2): 138–144. DOI: 10.1007/BF02324725.
    [5]
    蔡登安, 周光明, 王新峰, 等. 双向玻纤织物复合材料双轴拉伸载荷下的力学行为 [J]. 材料工程, 2014(5): 73–77; 85. DOI: 10.11868/j.issn.1001-4381.2014.05.013.

    CAI D A, ZHOU G M, WANG X F, et al. Mechanical behavior of bidirectional glass fiber fabric composites subjected to biaxial tensile loading [J]. Journal of Materials Engineering, 2014(5): 73–77; 85. DOI: 10.11868/j.issn.1001-4381.2014.05.013.
    [6]
    BOEHLER J P, DEMMERLE S, KOSS S. A new direct biaxial testing machine for anisotropic materials [J]. Experimental Mechanics, 1994, 34(1): 1–9. DOI: 10.1007/BF02328435.
    [7]
    WU X D, WAN M, ZHOU X B. Biaxial tensile testing of cruciform specimen under complex loading [J]. Journal of Materials Processing Technology, 2005, 168(1): 181–183. DOI: 10.1016/j.jmatprotec.2004.11.003.
    [8]
    RITTEL D, LEE S, RAVICHANDRAN G. A shear-compression specimen for large strain testing [J]. Experimental Mechanics, 2002, 42(1): 58–64. DOI: 10.1007/BF02411052.
    [9]
    HOU B, ONO A, ABDENNADHER S, et al. Impact behavior of honeycombs under combined shear-compression: Part I: experiments [J]. International Journal of Solids and Structures, 2011, 48(5): 687–697. DOI: 10.1016/j.ijsolstr.2010.11.005.
    [10]
    BAILLY P, DELVARE F, VIAL J, et al. Dynamic behavior of an aggregate material at simultaneous high pressure and strain rate: SHPB triaxial tests [J]. International Journal of Impact Engineering, 2011, 38(2−3): 73–84. DOI: 10.1016/j.ijimpeng.2010.10.005.
    [11]
    HUANG H, FENG R. A study of the dynamic tribological response of closed fracture surface pairs by Kolsky-bar compression-shear experiment [J]. International Journal of Solids and Structures, 2004, 41(11−12): 2821–2835. DOI: 10.1016/j.ijsolstr.2004.01.005.
    [12]
    徐松林, 王鹏飞, 单俊芳, 等. 真三轴静载作用下混凝土的动态力学性能研究 [J]. 振动与冲击, 2018, 37(15): 59–67. DOI: 10.13465/j.cnki.jvs.2018.15.008.

    XU S L, WANG P F, SHAN J F, et al. Dynamic behavior of concrete under static tri-axial loadings [J]. Journal of Vibration and Shock, 2018, 37(15): 59–67. DOI: 10.13465/j.cnki.jvs.2018.15.008.
    [13]
    郭伟国, 赵融, 魏腾飞, 等. 用于Hopkinson压杆装置的电磁驱动技术 [J]. 实验力学, 2010, 25(6): 682–689.

    GUO W G, ZHAO R, WEI T F, et al. Electromagnetic driving technique applied to split Hopkinson pressure bar device [J]. Journal of Experimental Mechanics, 2010, 25(6): 682–689.
    [14]
    NIE H L, SUO T, SHI X P, et al. Symmetric split Hopkinson compression and tension tests using synchronized electromagnetic stress pulse generators [J]. International Journal of Impact Engineering, 2018, 122: 73–82. DOI: 10.1016/j.ijimpeng.2018.08.004.
    [15]
    曹增强, 佘公藩, 周听清. 应力波在变截面杆中传播的数值分析 [J]. 航空学报, 1998, 19(6): 71–75. DOI: 10.3321/j.issn:1000-6893.1998.06.013.

    CAO Z Q, SHE G F, ZHOU T Q. Numerical analyses of stress wave propagation in a variable section bar [J]. Acta Aeronautica et Astronautica Sinica, 1998, 19(6): 71–75. DOI: 10.3321/j.issn:1000-6893.1998.06.013.
    [16]
    BECCU R, WU C M, LUNDBERG B. Reflection and transmission of the energy of transient elastic extensional waves in a bent bar [J]. Journal of Sound and Vibration, 1996, 191(2): 261–272. DOI: 10.1006/jsvi.1996.0120.
    [17]
    邓庆田, 罗松南. 压电圆柱曲杆中波的传播 [J]. 振动与冲击, 2008, 27(5): 76–78; 94. DOI: 10.3969/j.issn.1000-3835.2008.05.020.

    DENG Q T, LUO S N. Wave propagation in piezoelectric cylindrical bent bars [J]. Journal of Vibration and Shock, 2008, 27(5): 76–78; 94. DOI: 10.3969/j.issn.1000-3835.2008.05.020.
    [18]
    郭伟国, 赵思晗, 高猛, 等. 一种双轴Hopkinson杆高应变率拉伸装置及测试方法: CN110082204A [P]. 2019-08-02.
    [19]
    聂海亮, 石霄鹏, 陈春杨, 等. 单轴双向加载分离式霍普金森压杆的数据处理方法 [J]. 爆炸与冲击, 2018, 38(3): 517–524. DOI: 10.11883/bzycj-2017-0361.

    NIE H L, SHI X P, CHEN C Y, et al. Data processing method for bidirectional-load split Hopkinson compression bar [J]. Explosion and Shock Waves, 2018, 38(3): 517–524. DOI: 10.11883/bzycj-2017-0361.
    [20]
    YUAN K B, GUO W G, SU Y, et al. Study on several key problems in shock calibration of high-g accelerometers using Hopkinson bar [J]. Sensors and Actuators A: Physical, 2017, 258: 1–13. DOI: 10.1016/j.sna.2017.02.017.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (272) PDF downloads(57) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return