Volume 41 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
WEI Haipeng, SHI Chongbin, SUN Tiezhi, BAO Wenchun, ZHANG Guiyong. Numerical study on load-shedding performance of a high-speed water-entry vehicle based on an ALE method[J]. Explosion And Shock Waves, 2021, 41(10): 104201. doi: 10.11883/bzycj-2020-0461
Citation: WEI Haipeng, SHI Chongbin, SUN Tiezhi, BAO Wenchun, ZHANG Guiyong. Numerical study on load-shedding performance of a high-speed water-entry vehicle based on an ALE method[J]. Explosion And Shock Waves, 2021, 41(10): 104201. doi: 10.11883/bzycj-2020-0461

Numerical study on load-shedding performance of a high-speed water-entry vehicle based on an ALE method

doi: 10.11883/bzycj-2020-0461
  • Received Date: 2020-12-08
  • Rev Recd Date: 2021-03-23
  • Available Online: 2021-09-17
  • Publish Date: 2021-10-13
  • Aiming at the problem of load shedding in high-speed water entry of a vehicle, a composite structural buffer has been designed. Meanwhile, an accurate numerical model with the fluid-solid coupling is established to analyze the crushing process based on the arbitrary Lagrangian-Eulerian (ALE) algorithm and evaluate the effects of different schemes. The results show that the designed buffer can absorb the impact energy, leading to the damage and separation from the vehicle properly. The layered design of cushion foam changes the damage mode of the nose cap and causes it to be failure in advance. When the buffer is in contact with water, stress concentration occurs at the top of nose cap and preset groove. The groove effectively guides the destruction mode of the cap, such that the layered foam will not be too easy to be completely destroyed and the phenomenon of secondary cushion can occur. The velocity curve of the vehicle with the buffer changes more smoothly, the displacement is greater in the same time, and the load reduction rate of the layered foam scheme can reach 73.2% which is better than the single-layer foam scheme.
  • loading
  • [1]
    王永虎, 石秀华. 入水冲击问题研究的现状与进展 [J]. 爆炸与冲击, 2008, 28(3): 276–282. DOI: 10.11883/1001-1455(2008)03-0276-07.

    WANG Y H, SHI X H. Review on research and development of water-entry impact problem [J]. Explosion and Shock Waves, 2008, 28(3): 276–282. DOI: 10.11883/1001-1455(2008)03-0276-07.
    [2]
    潘光, 杨悝. 空投鱼雷入水载荷 [J]. 爆炸与冲击, 2014, 34(5): 521–526. DOI: 10.11883/1001-1455(2014)05-0521-06.

    PAN G, YANG K. Impact force encountered by water-entry airborne torpedo [J]. Explosion and Shock Waves, 2014, 34(5): 521–526. DOI: 10.11883/1001-1455(2014)05-0521-06.
    [3]
    石汉成, 蒋培, 程锦房. 头部形状对水雷入水载荷及水下弹道影响的数值仿真分析 [J]. 舰船科学技术, 2010, 32(10): 104–107. DOI: 10.3404/j.issn.1672-7649.2010.10.027.

    SHI H C, JIANG P, CHENG J F. Research on numerical simulation of mine water-entry impact acceleration and underwater ballistic trajectory under the different mine’s head shape [J]. Ship Science and Technology, 2010, 32(10): 104–107. DOI: 10.3404/j.issn.1672-7649.2010.10.027.
    [4]
    SHARKER S I, HOLEKAMP S, MANSOOR M M, et al. Water entry impact dynamics of diving birds [J]. Bioinspiration and Biomimetics, 2019, 14(5): 056013. DOI: 10.1088/1748-3190/ab38cc.
    [5]
    SHI Y, PAN G, YIM S C, et al. Numerical investigation of hydroelastic water-entry impact dynamics of AUVs [J]. Journal of Fluids and Structures, 2019, 91: 102760. DOI: 10.1016/j.jfluidstructs.2019.102760.
    [6]
    张学广, 边金尧, 方世武. Д形圆柱体大角度撞水载荷计算及缓冲问题的研究 [J]. 中国舰船研究, 2007, 2(5): 30–32, 41. DOI: 10.3969/j.issn.1673-3185.2007.05.007.

    ZHANG X G, BIAN J Y, FANG S W. Water impact load calculation and buffering design of Д type cylinder structure at large angle [J]. Chinese Journal of Ship Research, 2007, 2(5): 30–32, 41. DOI: 10.3969/j.issn.1673-3185.2007.05.007.
    [7]
    潘龙, 王焕然, 姚尔人, 等. 头部喷气平头圆柱体入水缓冲机制研究 [J]. 工程热物理学报, 2015, 36(8): 1691–1695.

    PAN L, WANG H R, YAO E R, et al. Mechanism research on the water-entry impact of the head-jetting flat cylinder [J]. Journal of Engineering Thermophysics, 2015, 36(8): 1691–1695.
    [8]
    SUN T Z, WANG Z H, ZOU L, et al. Numerical investigation of positive effects of ventilated cavitation around a NACA66 hydrofoil [J]. Ocean Engineering, 2020, 197: 106831. DOI: 10.1016/j.oceaneng.2019.106831.
    [9]
    HOWARD E A. Protective nose cap for torpedoes: U. S. Patent 2889772 [P]. Washington, DC: U. S. Patent and Trademark Office, 1959.
    [10]
    宣建明, 宋志平, 严忠汉. 鱼雷入水缓冲保护头帽解体试验研究 [J]. 鱼雷技术, 1999, 7(2): 41–46.

    XUAN J M, SONG Z P, YAN Z H. Experimental study on disintegration of torpedo nose cap during water entry [J]. Torpedo Technology, 1999, 7(2): 41–46.
    [11]
    钱立新, 刘飞, 屈明, 等. 鱼雷头罩入水破坏模式研究 [J]. 鱼雷技术, 2015, 23(4): 257–261.

    QIAN L X, LIU F, QU M, et al. Failure mode of torpedo nose cap in water-entry [J]. Torpedo Technology, 2015, 23(4): 257–261.
    [12]
    SHI Y, GAO X F, PAN G. Design and load reduction performance analysis of mitigator of AUV during high speed water entry [J]. Ocean Engineering, 2019, 181: 314–329. DOI: 10.1016/j.oceaneng.2019.03.062.
    [13]
    LI Y, ZONG Z, SUN T Z. Crushing behavior and load-reducing performance of a composite structural buffer during water entry at high vertical velocity [J]. Composite Structures, 2021, 255: 112883. DOI: 10.1016/j.compstruct.2020.112883.
    [14]
    魏洪亮, 赵静, 徐志程, 等. 基于流固耦合的航行体高速入水规律研究 [J]. 导弹与航天运载技术, 2020(2): 33–37. DOI: 10.7654/j.issn.1004-7182.20200207.

    WEI H L, ZHAO J, XU Z C, et al. Study on high-speed water entry law of trans-media vehicle based on fluid solid coupling [J]. Missiles and Space Vehicles, 2020(2): 33–37. DOI: 10.7654/j.issn.1004-7182.20200207.
    [15]
    曲春艳, 谢克磊, 马瑛剑, 等. 聚甲基丙烯酰亚胺(PMI)泡沫塑料的制备与表征 [J]. 材料工程, 2008(11): 19–23. DOI: 10.3969/j.issn.1001-4381.2008.11.005.

    QU C Y, XIE K L, MA Y J, et al. Preparation and characterization of polymethacrylimide foams [J]. Journal of Materials Engineering, 2008(11): 19–23. DOI: 10.3969/j.issn.1001-4381.2008.11.005.
    [16]
    杨洋, 陈新文, 王翔, 等. 聚甲基丙烯酰亚胺泡沫平面断裂韧性实验研究 [J]. 科技与创新, 2021(4): 12–14. DOI: 10.15913/j.cnki.kjycx.2021.04.005.

    YANG Y, CHEN X W, WANG X, et al. Experimental study on plane fracture toughness of PMI foam [J]. Science and Technology & Innovation, 2021(4): 12–14. DOI: 10.15913/j.cnki.kjycx.2021.04.005.
    [17]
    CHEN T, HUANG W, ZHANG W, et al. Experimental investigation on trajectory stability of high-speed water entry projectiles [J]. Ocean Engineering, 2019, 175: 16–24. DOI: 10.1016/j.oceaneng.2019.02.021.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(3)

    Article Metrics

    Article views (554) PDF downloads(113) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return