Volume 41 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
XUE Shao, TAO Ruyi, WANG Hao, CHENG Shenshen. Experimental research on the law of flame spreading in the charge bed of a central ignition tube[J]. Explosion And Shock Waves, 2021, 41(11): 112101. doi: 10.11883/bzycj-2021-0030
Citation: XUE Shao, TAO Ruyi, WANG Hao, CHENG Shenshen. Experimental research on the law of flame spreading in the charge bed of a central ignition tube[J]. Explosion And Shock Waves, 2021, 41(11): 112101. doi: 10.11883/bzycj-2021-0030

Experimental research on the law of flame spreading in the charge bed of a central ignition tube

doi: 10.11883/bzycj-2021-0030
  • Received Date: 2021-01-21
  • Rev Recd Date: 2021-03-19
  • Available Online: 2021-09-27
  • Publish Date: 2021-11-23
  • In order to investigate the development of flame spreading in the charge bed of a central ignition tube, a visualized ignition experiment platform was designed, and experiments were carried out with different ignition charge masses and charge structures. A high-speed image acquisition system was used to record the propagation process of ignition flame in the propellant bed at 10000 frames per second, and a transient pressure recorder was used to obtain the variation of pressure with time and position in the chamber. In addition, a synchronous trigger was used to connect the high-speed image acquisition system, the transient pressure recorder and the ignition system of the experimental platform, giving the system a trigger zero point, which is convenient for the statistical analysis of subsequent experimental phenomena. The experimental results show that the time of flame-appearing from the ignition tube into the combustion chamber is 0.6 ms when the mass of the black powder is 20 g. However, the time increases to 1.5 ms when the mass of the black powder is 30 g. The average flame-spreading time of the stick charge structure is 2.2 ms, the average flame-spreading time of the granular charge structure is 3.4 ms, and the average flame-spreading time of the mixed charge structure is 3.1 ms. The results indicate that the mass of the black powder in an ignition tube has a significant effect on the time of flame-appearing from the ignition tube, and the higher black powder mass lead to the longer flame-appearing time. The performances of flame-spreading in different charge bed structures are quite different. The performance of flame-spreading in the stick charge structures is better than that in the granular charge structures and mixed charge structures. In addition, the pressure fluctuations will appear in the chamber due to gas choking in the granular charge structures. A mathematical model of the flame-spreading process was established by fitting the first-order exponential decay function according to the time sequence of the position of flame, and the goodness of fit is greater than 0.98.
  • loading
  • [1]
    金志明, 翁春生. 高等内弹道学 [M]. 北京: 高等教育出版社, 2003: 237−239.
    [2]
    翁春生, 王浩. 计算内弹道学 [M]. 北京: 国防工业出版社, 2006: 95−97.
    [3]
    王升晨, 周彦煌, 刘千里, 等. 膛内多相燃烧理论及应用 [M]. 北京: 兵器工业出版社, 1994: 84−86.
    [4]
    ACHARYA R. Effect of different flash-tube vent-hole patterns on interior ballistic processes of ignition cartridge of 120-mm mortar system [J]. International Journal of Energetic Materials and Chemical Propulsion, 2008, 7(5): 383–397. DOI: 10.1615/IntJEnergeticMaterialsChemProp.v7.i5.30.
    [5]
    HOUIM R W, KUO K K. Understanding interior ballistic processes in a flash tube [J]. Journal of Applied Mechanics, 2010, 77(5): 051403. DOI: 10.1115/1.4001285.
    [6]
    MOORE J D, ACHARYA R, FERRARA P J. Effect of flash-tube vent-hole patterns on the combustion product discharge rate [J]. International Journal of Energetic Materials and Chemical Propulsion, 2009, 8(3): 199–220. DOI: 10.1615/IntJEnergeticMaterialsChemProp.v8.i3.30.
    [7]
    JIANG S P, RUI X T, HONG J, et al. Numerical simulation of impact breakage of gun propellant charge [J]. Granular Matter, 2011, 13(5): 611. DOI: 10.1007/s10035-011-0276-1.
    [8]
    张瑞华, 芮筱亭, 赵宏立, 等. 基于离散单元法的发射装药挤压破碎模拟实验 [J]. 爆炸与冲击, 2021, 41(6): 062301. DOI: 10.11883/bzycj-2020-0157.

    ZHANG R H, RUI X T, ZHAO H L, et al. Simulational experiment on compression and fracture of propellant charge based on the discrete element method [J]. Explosion and Shock Waves, 2021, 41(6): 062301. DOI: 10.11883/bzycj-2020-0157.
    [9]
    陈言坤, 罗兴柏, 甄建伟, 等. 发射药动态力学性能的研究进展 [J]. 含能材料, 2013, 21(5): 675–680. DOI: 10.3969/j.issn.1006-9941.2013.05.023.

    CHEN Y K, LUO X B, ZHEN J W, et al. Review on dynamical mechanical properties of propellants [J]. Chinese Journal of Energetic Materials, 2013, 21(5): 675–680. DOI: 10.3969/j.issn.1006-9941.2013.05.023.
    [10]
    王浩, 梁世超, 张莺, 等. 火焰在传火管装药床中的传输特性研究 [J]. 爆炸与冲击, 1999, 19(1): 66–71.

    WANG H, LIANG S C, ZHANG Y, et al. Study of flame propagation characteristics in fire transfering tube [J]. Explosion and Shock Waves, 1999, 19(1): 66–71.
    [11]
    王珊珊, 张玉成, 王浩, 等. 大长径比点火管高密实火药床点传火过程两相流的数值模拟 [J]. 爆炸与冲击, 2013, 33(4): 444–448. DOI: 10.11883/1001-1455(2013)04-0444-05.

    WANG S S, ZHANG Y C, WANG H, et al. Two-phase flow in ignition process of consolidated charge bed within a large length-to-diameter ratio igniter tube [J]. Explosion and Shock Waves, 2013, 33(4): 444–448. DOI: 10.11883/1001-1455(2013)04-0444-05.
    [12]
    王珊珊, 王浩, 黄明, 等. 药床透气性对大长径比点传火管点传火性能的影响研究 [J]. 弹道学报, 2013, 25(4): 95–99. DOI: 10.3969/j.issn.1004-499X.2013.04.019.

    WANG S S, WANG H, HUANG M, et al. Research on influence of charge permeability on ignition characteristics on large length-diameter ratio igniter tube [J]. Journal of Ballistics, 2013, 25(4): 95–99. DOI: 10.3969/j.issn.1004-499X.2013.04.019.
    [13]
    韩博, 张晓志, 邢浴仁, 等. 大口径火炮发射装药点传火模拟试验装置的研究 [J]. 兵工学报, 2008, 29(3): 262–265. DOI: 10.3321/j.issn:1000-1093.2008.03.002.

    HAN B, ZHANG X Z, XING Y R, et al. Research on simulation testing device of the ignition system for large caliber propellant charging [J]. Acta Armamentarii, 2008, 29(3): 262–265. DOI: 10.3321/j.issn:1000-1093.2008.03.002.
    [14]
    程诚, 张小兵. 某制导炮弹二维两相流内弹道性能分析与数值模拟研究 [J]. 兵工学报, 2015, 36(1): 58–63. DOI: 10.3969/j.issn.1000-1093.2015.01.009.

    CHENG C, ZHANG X B. Two-dimensional numerical simulation on two-phase flow interior ballistic performance of a guided projectile [J]. Acta Armamentarii, 2015, 36(1): 58–63. DOI: 10.3969/j.issn.1000-1093.2015.01.009.
    [15]
    MIURA H, MATSUO A, NAKAMURA Y. Three-dimensional simulation of pressure fluctuation in a granular solid propellant chamber within an ignition stage [J]. Propellants, Explosives, Pyrotechnics, 2011, 36(3): 259–267. DOI: 10.1002/prep.201000058.
    [16]
    JANG J S, Oh S H, ROH T S. Development of three-dimensional numerical model for combustion-flow in interior ballistics [J]. Journal of Mechanical Science and Technology, 2016, 30(4): 1631–1637. DOI: 10.1007/s12206-016-0319-y.
    [17]
    JENARO G, OTON-MARTINEZ R A, MORATILLA D, et al. Analysis of pressure waves generation in gun combustion chambers during the propellant ignition process [J]. Propellants, Explosives, Pyrotechnics, 2016, 41(2): 228–237. DOI: 10.1002/prep.201500173.
    [18]
    JARAMAZ S, MICKOVIĆ D, ELEK P. Two-phase flows in gun barrel: theoretical and experimental studies [J]. International Journal of Multiphase Flow, 2011, 37(5): 475–487. DOI: 10.1016/j.ijmultiphaseflow.2011.01.003.
    [19]
    COLLETTI A, BOYER E, KUO K K, et al. Characterization of black-powder igniter jets into a granular bed through analysis of condensed-phase product deposition and regions of penetration [J]. International Journal of Energetic Materials and Chemical Propulsion, 2010, 9(6): 505–522. DOI: 10.1615/IntJEnergeticMaterialsChemProp.2011001422.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (407) PDF downloads(47) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return