Volume 41 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
ZHANG Xuan, YU Yonggang, ZHANG Xinwei. Analysis of muzzle flow field characteristics of gun fired in different media[J]. Explosion And Shock Waves, 2021, 41(10): 103901. doi: 10.11883/bzycj-2021-0056
Citation: ZHANG Xuan, YU Yonggang, ZHANG Xinwei. Analysis of muzzle flow field characteristics of gun fired in different media[J]. Explosion And Shock Waves, 2021, 41(10): 103901. doi: 10.11883/bzycj-2021-0056

Analysis of muzzle flow field characteristics of gun fired in different media

doi: 10.11883/bzycj-2021-0056
  • Received Date: 2021-02-03
  • Rev Recd Date: 2021-08-23
  • Available Online: 2021-09-23
  • Publish Date: 2021-10-13
  • To study the muzzle flow field created by a sealed launch of an underwater gun and the distribution characteristics of the muzzle flow field in different media, a two-dimensional axisymmetric numerical model for the muzzle multiphase flow created by an underwater sealed launch is established. The volume of fluid numerical model, standard k-$\varepsilon $ turbulence model, user-defined function (UDF) and dynamic mesh technology are used to numerically analyze and compare the evolution process of the muzzle flow field between underwater sealed launch and air launch. The calculation results show that the muzzle flow field is notably different from that in air when the gun is launched under water. The maximum chamber pressure of the underwater sealed launch is basically the same as that in air. The muzzle velocity of the projectile is reduced by 32 m/s compared with launching in air, while the pressure and temperature of the muzzle are significantly increased. The Mach disc of the underwater sealed launch is initially formed at about 140 μs, while the Mach disc of the air launch is formed later, at about 320 μs. Compared with launching in air, the core area of shock wave in underwater launch is smaller, and there is no coronal shock wave around the head of the projectile. In the case of underwater sealed launch, the axial displacement of the Mach disc from the muzzle increases exponentially with time, while in the case of air launch, the axial displacement of the Mach disc from the muzzle increases linearly with time.
  • loading
  • [1]
    STEWARD B J, GROSS K C, PERRAM G P. Optical characterization of large caliber muzzle blast waves [J]. Propellants, Explosives, Pyrotechnics, 2011, 36(6): 564–575. DOI: 10.1002/prep.201100037.
    [2]
    MOUMEN A, GROSSEN J, NDINDABAHIZI I. et al. Visualization and analysis of muzzle flow fields using the background-oriented schlieren technique [J]. Journal of Visualization, 2020, 23(3): 409–423. DOI: 10.1007/s12650-020-00639-w.
    [3]
    郭则庆, 王杨, 姜孝海, 等. 小口径武器膛口流场可视化实验 [J]. 实验流体力学, 2012, 26(2): 46–50. DOI: 10.3969/j.issn.1672-9897.2012.02.010.

    GUO Z Q, WANG Y, JIANG X H, et al. Visual experiment on the muzzle flow field of the small caliber gun [J]. Journal of Experiments in Fluid Mechanics, 2012, 26(2): 46–50. DOI: 10.3969/j.issn.1672-9897.2012.02.010.
    [4]
    李子杰, 王浩. 膛口初始流场对火药燃气射流的影响 [J]. 含能材料, 2017, 25(4): 282–290. DOI: 10.11943/j.issn.1006-9941.2017.04.003.

    LI Z J, WANG H. Effect of precursor flow field of muzzle on the combustion gas jet flow of gun propellant [J]. Chinese Journal of Energetic Materials, 2017, 25(4): 282–290. DOI: 10.11943/j.issn.1006-9941.2017.04.003.
    [5]
    陈川琳, 黄陈磊, 许辉, 等. 小口径步枪弹头后效期运动特性试验与数值研究 [J]. 兵工学报, 2019, 40(2): 265–275. DOI: 10.3969/j.issn.1000-1093.2019.02.006.

    CHEN C L, HUANG C L, XU H, et al. Experimental and numerical research on motion characteristics of a small caliber bullet in muzzle flows [J]. Acta Armamentarii, 2019, 40(2): 265–275. DOI: 10.3969/j.issn.1000-1093.2019.02.006.
    [6]
    HARBY K, CHIVA S, MUÑOZ-COBO J L. An experimental investigation on the characteristics of submerged horizontal gas jets in liquid ambient [J]. Experimental Thermal and Fluid Science, 2014, 53: 26–39. DOI: 10.1016/j.expthermflusci.2013.10.009.
    [7]
    甘晓松, 贾有军, 鲁传敬, 等. 水下燃气射流流场数值研究 [J]. 固体火箭技术, 2009, 32(1): 23–26.

    GAN X S, JIA Y J, LU C J, et al. Research on numerical simulation of combustion gas jets under water [J]. Journal of Solid Rocket Technology, 2009, 32(1): 23–26.
    [8]
    XUE X C, YU Y G, ZHANG Q. Expansion characteristics of twin combustion gas jets with high pressure in cylindrical filling liquid chamber [J]. Journal of Hydrodynamics, 2013, 25(5): 763–771. DOI: 10.1016/S1001-6058(13)60423-0.
    [9]
    刘育平, 李金新, 杨臻, 等. 水下炮内弹道分析与数值仿真 [J]. 火炮发射与控制学报, 2007(4): 30–33. DOI: 10.3969/j.issn.1673-6524.2007.04.009.

    LIU Y P, LI J X, YANG Z, et al. Internal ballistics analysis and numerical simulation of underwater gun [J]. Journal of Gun Launch and Control, 2007(4): 30–33. DOI: 10.3969/j.issn.1673-6524.2007.04.009.
    [10]
    易文俊, 李铁鹏, 熊天红, 等. 水下高速航行体自然超空泡形态特性仿真研究 [J]. 南京理工大学学报(自然科学版), 2009, 33(3): 330–334. DOI: 10.3969/j.issn.1005-9830.2009.03.012.

    YI W J, LI T P, XIONG T H, et al. Simulation on natural supercavitation characteristics of underwater high-speed vehicle [J]. Journal of Nanjing University of Science and Technology (Natural Science), 2009, 33(3): 330–334. DOI: 10.3969/j.issn.1005-9830.2009.03.012.
    [11]
    施红辉, 周栋, 温俊生, 等. 基于ALE方法的弹性圆柱壳入水时的流固耦合模拟 [J]. 弹道学报, 2020, 32(1): 9–14; 46. DOI: 10.12115/j.Issn.1004-499X(2020)01-002.

    SHI H H, ZHOU D, WEN J S, et al. Fluid-solid interaction simulation of elastic cylindrical shell penetrating water based on the ALE method [J]. Journal of Ballistics, 2020, 32(1): 9–14; 46. DOI: 10.12115/j.Issn.1004-499X(2020)01-002.
    [12]
    刘富强, 罗凯, 黄闯, 等. 并列超空泡射弹弹道特性研究 [J]. 水下无人系统学报, 2020, 28(2): 202–208. DOI: 10.11993/j.issn.2096-3920.2020.02.013.

    LIU F Q, LUO K, HUANG C, et al. Study on ballistic characteristics of the parallel supercavitating projectiles [J]. Journal of Unmanned Undersea Systems, 2020, 28(2): 202–208. DOI: 10.11993/j.issn.2096-3920.2020.02.013.
    [13]
    黄海龙, 王聪, 余德磊, 等. 高速射弹并联入水过程空泡演化特性试验 [J]. 哈尔滨工业大学学报, 2020, 52(12): 15–20. DOI: 10.11918/201903028.

    HUANG H L, WANG C, YU D L, et al. Experimental study on cavitation evolution of high-speed projectile water entry in parallel [J]. Journal of Harbin Institute of Technology, 2020, 52(12): 15–20. DOI: 10.11918/201903028.
    [14]
    GAO J G, CHEN Z H, HUANG Z G, et al. Numerical investigations on the oblique water entry of high-speed projectiles [J]. Applied Mathematics and Computation, 2019, 362: 124547. DOI: 10.1016/j.amc.2019.06.061.
    [15]
    张欣尉, 余永刚. 水下发射对机枪膛口温度场影响的数值分析 [J]. 含能材料, 2017, 25(11): 932–938. DOI: 10.11943/j.issn.1006-9941.2017.11.008.

    ZHANG X W, YU Y G. Numerical analysis for the effect of underwater launch on the temperature field of machine gun muzzle [J]. Chinese Journal of Energetic Materials, 2017, 25(11): 932–938. DOI: 10.11943/j.issn.1006-9941.2017.11.008.
    [16]
    张京辉, 余永刚. 弹道枪不同水深下全淹没式发射膛口流场的数值分析 [J]. 爆炸与冲击, 2020, 40(10): 97–109. DOI: 10.11883/bzycj-2019-0478.

    ZHANG J H, YU Y G. Numerical investigation on the muzzle flow field of an underwater submerged launched ballistic gun at different water depths [J]. Explosion and Shock Waves, 2020, 40(10): 97–109. DOI: 10.11883/bzycj-2019-0478.
    [17]
    李鸿志, 姜孝海, 王杨, 等. 中间弹道学 [M]. 北京: 北京理工大学出版社, 2015: 31–33.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(1)

    Article Metrics

    Article views (462) PDF downloads(75) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return