Citation: | MA Wenxuan, YU Yong, HU Jun. Optimal design of the head shape of a small-caliber supercavitating projectile[J]. Explosion And Shock Waves, 2022, 42(3): 033305. doi: 10.11883/bzycj-2021-0092 |
[1] |
赵卫. 超空泡高速鱼雷技术综合分析 [D]. 哈尔滨: 哈尔滨工程大学, 2005: 51−59.
ZHAO W. General analyse of superspeed supercavitating torpedo technique [D]. Harbin: Harbin Engineering University, 2005: 51−59.
|
[2] |
牟晴, 赵潇雨, 周维. 超空泡技术在小口径炮弹上的应用 [J]. 四川兵工学报, 2010, 31(4): 31–33. DOI: 10.3969/j.issn.1006-0707.2010.04.011.
|
[3] |
鲁林旺. 复杂结构体射弹出入水时超空泡流特性的研究 [D]. 杭州: 浙江理工大学, 2019: 31−35.
LU L W. Research on supercavitation flows characteristics of projectiles with complex structure water exit and entry [D]. Hangzhou: Zhejiang Sci-Tech University, 2019: 31−35
|
[4] |
罗格维诺维奇 T B. 自由边界流动的水动力学 [M]. 施红辉, 译. 上海: 上海交通大学出版社, 2012: 283−290.
|
[5] |
SAVCHENKO Y N. Experimental investigation of supercavitating motion of bodies [Z] // VAN DEN BRAEMBUSSCHE. VKI Special Course on Supercavitating Flows. Brussels, Belgium, 2001.
|
[6] |
SAVCHENKO Y N, VLASENKO Y D, SEMENENKO V N. Experimental studies of high-speed cavitated flows [J]. International Journal of Fluid Mechanics Research, 1999, 26(3): 365–374. DOI: 10.1615/InterJFluidMechRes.v26.i3.80.
|
[7] |
张学伟, 张亮, 王聪, 等. 基于Logvinovich独立膨胀原理的超空泡形态计算方法 [J]. 兵工学报, 2009, 30(3): 361–365. DOI: 10.3321/j.issn:1000-1093.2009.03.021.
ZHANG X W, ZHANG L, WANG C, et al. A calculation method for supercavity shape based on the Logvinovich independence principle of the cavity section expansion [J]. Acta Armamentarii, 2009, 30(3): 361–365. DOI: 10.3321/j.issn:1000-1093.2009.03.021.
|
[8] |
施红辉, 周素云, 张晓萍, 等. 水下超空泡流体机械的机理和技术研究综述 [C] // 第十五届全国激波与激波管学术会议论文集(下册). 杭州: 中国力学学会, 2012: 554−564.
|
[9] |
王云, 袁绪龙, 吕策. 弹体高速入水弯曲弹道实验研究 [J]. 兵工学报, 2014, 35(12): 1998–2002. DOI: 10.3969/j.issn.1000-1093.2014.12.010.
WANG Y, YUAN X L, LYU C. Experimental research on curved trajectory of high-speed water-entry missile [J]. Acta Armamentarii, 2014, 35(12): 1998–2002. DOI: 10.3969/j.issn.1000-1093.2014.12.010.
|
[10] |
孙士明, 颜开, 褚学森, 等. 射弹高速斜入水过程的数值仿真 [J]. 兵工学报, 2020, 41(S1): 122–127. DOI: 10.3969/j.issn.1000-1093.2020.S1.018.
SUN S M, YAN K, CHU X S, et al. Numerical simulation of high-speed oblique water entry of a projectile [J]. Acta Armamentarii, 2020, 41(S1): 122–127. DOI: 10.3969/j.issn.1000-1093.2020.S1.018.
|
[11] |
陈伟善, 郭则庆, 刘如石, 等. 空化器形状对超空泡射弹尾拍运动影响的数值研究 [J]. 工程力学, 2020, 37(4): 248–256. DOI: 10.6052/j.issn.1000-4750.2019.06.0328.
CHEN W S, GUO Q Z, LIU R S, et al. Numerical simulation on the influence of cavitator shapes on the tail-slap of supercavitating projectiles [J]. Engineering Mechanics, 2020, 37(4): 248–256. DOI: 10.6052/j.issn.1000-4750.2019.06.0328.
|
[12] |
郜冶, 刘乾坤, 陈宇翔. FBM湍流模型水翼空化绕流数值研究 [J]. 哈尔滨工程大学学报, 2013, 34(1): 92–97. DOI: 10.3969/j.issn.1006-7043.201206013.
GAO Y, LIU Q K, CHEN Y X. Numerical simulation on cavitating flow around hydrofoil with filter-based turbulence model [J]. Journal of Harbin Engineering University, 2013, 34(1): 92–97. DOI: 10.3969/j.issn.1006-7043.201206013.
|
[13] |
卢炳举, 罗松, 朱珠, 等. 高速射弹入水空泡多相流场数值模拟 [J]. 兵器装备工程学报, 2017, 38(12): 242–246. DOI: 10.11809/scbgxb2017.12.053.
LU B J, LUO S, ZHU Z, et al. Numerical simulation of multiphase flow field of high velocity projectile entering water [J]. Journal of Ordnance Equipment Engineering, 2017, 38(12): 242–246. DOI: 10.11809/scbgxb2017.12.053.
|
[14] |
胡俊, 侯夏伊, 于勇. 基于当地流动特征的Schnerr-Sauer空化模型改进研究 [J]. 北京理工大学学报, 2021, 41(1): 9–15. DOI: 10.15918/j.tbit1001-0645.2019.272.
HU J, HOU X Y, YU Y. A modified Schnerr-Sauer cavitation model with local flow properties [J]. Transaction of Beijing Institute of Technology, 2021, 41(1): 9–15. DOI: 10.15918/j.tbit1001-0645.2019.272.
|
[15] |
HRUBES J D. High-speed imaging of supercavitating underwater projectiles [J]. Experiments in Fluids, 2001, 30(1): 57–64. DOI: 10.1007/s003480000135.
|
[16] |
范伟. 小口径弹药的“奇葩”: 中国DBP87式5.8毫米普通弹 [J]. 兵器知识, 2000(10): 30–32.
|
[17] |
三土, 明光. 让枪弹飞行于水陆间: 挪威DSG公司多环境弹药系统 [J]. 轻兵器, 2012(20): 35–39.
|
[18] |
BRUNTON S L, NOACK B R, KOUMOUTSAKOS P. Machine learning for fluid mechanics [J]. Annual Review of Fluid Mechanics, 2020, 52: 477–508. DOI: 10.1146/annurev-fluid-010719-060214.
|
[19] |
BÖLCSKEI H, GROHS P, KUTYNIOK G, et al. Optimal approximation with sparsely connected deep neural networks [J]. SIAM Journal on Mathematics of Data Science, 2019, 1(1): 8–45. DOI: 10.1137/18M118709X.
|
[20] |
HORNIK K, STINCHCOMBE M, WHITE H. Multilayer feedforward networks are universal approximators [J]. Neural Networks, 1989, 2(5): 359–366. DOI: 10.1016/0893-6080(89)90020-8.
|
[21] |
赵弘, 周瑞祥, 林廷圻. 基于Levenberg-Marquardt算法的神经网络监督控制 [J]. 西安交通大学学报, 2002, 36(5): 523–527. DOI: 10.3321/j.issn:0253-987X.2002.05.020.
ZHAO H, ZHOU R X, LIN T Q. Neural network supervised control based on Levenberg-Marquardt algorithm [J]. Journal of Xi’an Jiaotong University, 2002, 36(5): 523–527. DOI: 10.3321/j.issn:0253-987X.2002.05.020.
|
[22] |
WECHSLER H. Learning from data: concepts, theory and methods, Vladimir Cherkassky and Filip Mulier, John Wiley, New York, 1998 [J]. International Journal of Robust and Nonlinear Control, 2000, 10(9): 747–748. DOI: 10.1002/1099-1239(20000730)10:9<747::AID-RNC507>3.0.CO;2-5.
|
[23] |
张菊亮, 章祥荪. 不等式约束最优化的非光滑精确罚函数的一个光滑近似 [J]. 系统科学与数学, 2000, 20(4): 499–505. DOI: 10.12341/jssms09839.
ZHANG J L, ZHANG X S. A smoothing approximation to the exact penalty function for optimization with inequlity constraints [J]. Journal of Systems Science and Mathematical Sciences, 2000, 20(4): 499–505. DOI: 10.12341/jssms09839.
|