Volume 42 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
YUAN Liangzhu, MIAO Chunhe, SHAN Junfang, WANG Pengfei, XU Songlin. On strain-rate and inertia effects of concrete samples under impact[J]. Explosion And Shock Waves, 2022, 42(1): 013101. doi: 10.11883/bzycj-2021-0114
Citation: YUAN Liangzhu, MIAO Chunhe, SHAN Junfang, WANG Pengfei, XU Songlin. On strain-rate and inertia effects of concrete samples under impact[J]. Explosion And Shock Waves, 2022, 42(1): 013101. doi: 10.11883/bzycj-2021-0114

On strain-rate and inertia effects of concrete samples under impact

doi: 10.11883/bzycj-2021-0114
  • Received Date: 2021-04-01
  • Rev Recd Date: 2021-06-02
  • Available Online: 2021-12-02
  • Publish Date: 2022-01-20
  • Based on the dynamic experimental results of concrete specimens under true triaxial confinement, the Holmquist-Johnson-Cook (HJC) model considering the strain rate effect and the Drucker-Prager (DP) model considering the hydrostatic pressure effect were employed for numerical analysis to explore the methods for studying the strain rate effects and inertia effects. In order to explore the relationship between the strain rate effect and the lateral inertia effect of concrete, the numerical simulation results of the HJC model were used to fit the parameters of the DP criterion, and the values of the parameters α and k at four strain rates were obtained. The relationship between the DP criterion parameters and the strain rate and hydrostatic pressure was comprehensively analyzed. The results of numerical analysis show that with the increase of strain rate, the strength of concrete increases, and this strength increase is partly due to the increase of the first stress invariant I1. It can be concluded that the strain rate and lateral inertia constraint of concrete specimens have a strong coupling effect. The relationship between the distribution characteristics of the transverse stress and the strain rate, hydrostatic pressure and specimen size under impact are analyzed theoretically and numerically. The results show that the amplitude of the transverse stress increases with the strain rate and hydrostatic pressure, but decreases with the sample size. In order to investigate the effect of lateral inertia on the strength improvement, a parameter ξ related to the maximum stress σx and the equivalent stress σe in the impact direction, defined as ξ=(σxσe)/σx, was proposed. The relationship between the strain rate, hydrostatic pressure, specimen size and the parameter ξ was analyzed by the HJC model. It is found that this parameter has evident size effect, strain rate effect and hydrostatic pressure effect. However, the relationship between the parameter ξ and the stress triaxiality shows a strain rate independent characteristic. It can provide a new way for the investigation of strain rate effect.
  • loading
  • [1]
    胡时胜, 王礼立, 宋力, 等. Hopkinson压杆技术在中国的发展回顾 [J]. 爆炸与冲击, 2014, 34(6): 641–657. DOI: 10.11883/1001-1455(2014)06-0641-17.

    HU S S, WANG L L, SONG L, et al. Review of the development of Hopkinson pressure bar technique in China [J]. Explosion and Shock Waves, 2014, 34(6): 641–657. DOI: 10.11883/1001-1455(2014)06-0641-17.
    [2]
    徐松林, 单俊芳, 王鹏飞. 脆性材料高应变率压缩失效机制综述与研究进展 [J]. 现代应用物理, 2020, 11(3): 30101. DOI: 10.12061/j.issn.2095-6223.2020.030101.

    XU S L, SHAN J F, WANG P F. Review and research progress of dynamic failure mechanism for brittle materials under high strain rate [J]. Modern Applied Physics, 2020, 11(3): 30101. DOI: 10.12061/j.issn.2095-6223.2020.030101.
    [3]
    TANG Z P, XU S L, DAI X Y, et al. S-wave tracing technique to investigate the damage and failure behavior of brittle materials subjected to shock loading [J]. International Journal of Impact Engineering, 2005, 31(9): 1172–1191. DOI: 10.1016/j.ijimpeng.2004.07.005.
    [4]
    XU S L, HUANG J Y, WANG P F, et al. Investigation of rock material under combined compression and shear dynamic loading: an experimental technique [J]. International Journal of Impact Engineering, 2015, 86: 206–222. DOI: 10.1016/j.ijimpeng.2015.07.014.
    [5]
    王礼立. 应力波基础 [M]. 2版. 北京: 国防工业出版社, 2005: 29−35.
    [6]
    王鹏飞, 徐松林, 郑航, 等. 变形模式对多孔金属材料SHPB实验结果的影响 [J]. 力学学报, 2012, 44(5): 928–932. DOI: 10.6052/0459-1879-11-354.

    WANG P F, XU S L, ZHENG H, et al. Influence of deformation modes on SHPB experimental results of cellular metal [J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(5): 928–932. DOI: 10.6052/0459-1879-11-354.
    [7]
    WANG P F, XU S L, LI Z B, et al. Experimental investigation on the strain-rate effect and inertia effect of closed-cell aluminum foam subjected to dynamic loading [J]. Materials Science and Engineering: A, 2015, 620: 253–261. DOI: 10.1016/j.msea.2014.10.026.
    [8]
    徐松林, 王鹏飞, 赵坚, 等. 基于三维Hopkinson杆的混凝土动态力学性能研究 [J]. 爆炸与冲击, 2017, 37(2): 180–185. DOI: 10.11883/1001-1455(2017)02-0180-06.

    XU S L, WANG P F, ZHAO J, et al. Dynamic behavior of concrete under static triaxial loading using 3D-Hopkinson bar [J]. Explosion and Shock Waves, 2017, 37(2): 180–185. DOI: 10.11883/1001-1455(2017)02-0180-06.
    [9]
    徐松林, 王鹏飞, 单俊芳, 等. 真三轴静载作用下混凝土的动态力学性能研究 [J]. 振动与冲击, 2018, 37(15): 59–67. DOI: 10.13465/j.cnki.jvs.2018.15.008.

    XU S L, WANG P F, SHAN J F, et al. Dynamic behavior of concrete under static tri-axial loadings [J]. Journal of Vibration and Shock, 2018, 37(15): 59–67. DOI: 10.13465/j.cnki.jvs.2018.15.008.
    [10]
    XU S L, SHAN J F, ZHANG L, et al. Dynamic compression behaviors of concrete under true triaxial confinement: an experimental technique [J]. Mechanics of Materials, 2020, 140: 103220. DOI: 10.1016/j.mechmat.2019.103220.
    [11]
    GROTE D L, PARK S W, ZHOU M. Dynamic behavior of concrete at high strain rates and pressures: Ⅰ: experimental characterization [J]. International Journal of Impact Engineering, 2001, 25(9): 869–886. DOI: 10.1016/S0734-743X(01)00020-3.
    [12]
    高光发. 混凝土材料动态压缩强度的应变率强化规律 [J]. 高压物理学报, 2017, 31(3): 261–270. DOI: 10.11858/gywlxb.2017.03.007.

    GAO G F. Effect of strain-rate hardening on dynamic compressive strength of plain concrete [J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 261–270. DOI: 10.11858/gywlxb.2017.03.007.
    [13]
    LI Q M, MENG H. About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test [J]. International Journal of Solids and Structures, 2003, 40(2): 343–360. DOI: 10.1016/S0020-7683(02)00526-7.
    [14]
    MENG H, LI Q M. Correlation between the accuracy of a SHPB test and the stress uniformity based on numerical experiments [J]. International Journal of Impact Engineering, 2003, 28(5): 537–555. DOI: 10.1016/S0734-743X(02)00073-8.
    [15]
    MENG H, LI Q M. Modification of SHPB set-up to minimize wave dispersion and attenuation effects [J]. International Journal of Impact Engineering, 2003, 28(6): 677–696. DOI: 10.1016/S0734-743X(02)00124-0.
    [16]
    LI Q M, LU Y B, MENG H. Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests: Part Ⅱ: numerical simulations [J]. International Journal of Impact Engineering, 2009, 36(12): 1335–1345. DOI: 10.1016/j.ijimpeng.2009.04.010.
    [17]
    杨茨, 徐松林, 易洪昇. 冲击载荷下圆环压缩变形特性研究 [J]. 振动与冲击, 2015, 34(11): 128–132,145. DOI: 10.13465/j.cnki.jvs.2015.11.023.

    YANG C, XU S L, YI H S. Deformation properties of a ring under impact loading [J]. Chinese Journal of Vibration and Shock, 2015, 34(11): 128–132,145. DOI: 10.13465/j.cnki.jvs.2015.11.023.
    [18]
    FORRESTAL M J, WRIGHT T W, CHEN W. The effect of radial inertia on brittle samples during the split Hopkinson pressure bar test [J]. International Journal of Impact Engineering, 2007, 34(3): 405–411. DOI: 10.1016/j.ijimpeng.2005.12.001.
    [19]
    FORQUIN P, GARY G, GATUINGT F. A testing technique for concrete under confinement at high rates of strain [J]. International Journal of Impact Engineering, 2008, 35(6): 425–446. DOI: 10.1016/j.ijimpeng.2007.04.007.
    [20]
    HOLMQUIST T J, JOHNSON G R. A computational constitutive model for concrete subjected to larger strains, high strain rates and high pressure [C]//JACKSON N, DICKERT S. 14th International Symposium on Ballistics. USA: American Defense Preparedness Association, 1995: 591−600.
    [21]
    BAILLY P, DELVARE F, VIAL J, et al. Dynamic behavior of an aggregate material at simultaneous high pressure and strain rate: SHPB triaxial tests [J]. International Journal of Impact Engineering, 2011, 38(2/3): 73–84. DOI: 10.1016/j.ijimpeng.2010.10.005.
    [22]
    ALEJANO L R, BOBET A. Drucker-prager criterion [J]. Rock Mechanics and Rock Engineering, 2012, 45(6): 995–999. DOI: 10.1007/s00603-012-0278-2.
    [23]
    苗春贺, 陈丽娜, 单俊芳, 等. 水泥砂浆抗弹性能研究 [J]. 高压物理学报, 2021, 35(2): 024205. DOI: 10.11858/gywlxb.20200609.

    MIAO C H, CHEN L N, SHAN J F, et al. Research on the ballistic performance of cement mortar [J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024205. DOI: 10.11858/gywlxb.20200609.
    [24]
    刘孝敏, 胡时胜. 大直径SHPB弥散效应的二维数值分析 [J]. 实验力学, 2000, 15(4): 371–376. DOI: 10.3969/j.issn.1001-4888.2000.04.003.

    LIU X M, HU S S. Two-dimensional numerical analysis for the dispersion of stress waves in large-diameter-SHPB [J]. Journal of Experimental Mechanics, 2000, 15(4): 371–376. DOI: 10.3969/j.issn.1001-4888.2000.04.003.
    [25]
    BAI Y L, TENG X Q, WIERZBICKI T. On the application of stress triaxiality formula for plane strain fracture testing [J]. Journal of Engineering Materials and Technology, 2009, 131(2): 021002. DOI: 10.1115/1.3078390.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (539) PDF downloads(191) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return