Volume 42 Issue 3
Apr.  2022
Turn off MathJax
Article Contents
YANG Jianhua, DAI Jinhao, YAO Chi, HU Yingguo, ZHANG Xiaobo, ZHOU Chuangbing. Displacement mutation characteristics and energy mechanisms of anchored jointed rock slopes under blasting excavation disturbance[J]. Explosion And Shock Waves, 2022, 42(3): 035201. doi: 10.11883/bzycj-2021-0126
Citation: YANG Jianhua, DAI Jinhao, YAO Chi, HU Yingguo, ZHANG Xiaobo, ZHOU Chuangbing. Displacement mutation characteristics and energy mechanisms of anchored jointed rock slopes under blasting excavation disturbance[J]. Explosion And Shock Waves, 2022, 42(3): 035201. doi: 10.11883/bzycj-2021-0126

Displacement mutation characteristics and energy mechanisms of anchored jointed rock slopes under blasting excavation disturbance

doi: 10.11883/bzycj-2021-0126
  • Received Date: 2021-04-14
  • Rev Recd Date: 2021-11-26
  • Available Online: 2022-01-27
  • Publish Date: 2022-04-07
  • The stability of anchored jointed rock slopes under dynamic disturbance of blasting excavation is a major concern for designers and constructors. For the left-bank slope at the valley bottom of the Baihetan hydropower station, the displacement characteristics and related energy mechanism of the anchored jointed rock slope under blasting excavation disturbance were investigated. The field monitoring data of the rock mass displacement and the anchor cable axial force were first presented to show their synchronous mutation characteristics under blasting excavation disturbance. A three-dimensional numerical simulation was then conducted by using FLAC3D to reveal the energy mechanism of the rock mass displacement mutation. The controlling effect of prestressed anchor cables on the rock mass displacement mutation was finally analyzed from the perspective of energy absorption and release. The results show that for the blasting excavation of the rock mass subjected to high in-situ stress at the valley bottom, the displacement mutation of the jointed rock slope is attributed to the rapid release of accumulated strain energy. The accumulated strain energy originates two actions, one is the blasting pressure, and the other one is the in-situ stress. The abrupt displacement of the jointed rock slope includes joint opening displacement and rock springback displacement. The total abrupt displacement will increase as the result of the in-situ stress level increases and the elastic modulus of the rock mass decreases. The prestressed anchor cable has a restraining effect on the displacement mutation of the jointed rock slope, and it mainly controls the joint opening displacement. The anchor cable with a higher prestress level corresponds to higher energy absorption and release rates, and thus has a stronger restraint on the displacement mutation of the jointed rock slope. However, when the prestress of the anchor cable is increased to a higher level, the displacement mutation of the jointed rock slope no longer decreases significantly with an increase in the prestress level.
  • loading
  • [1]
    周创兵. 水电工程高陡边坡全生命周期安全控制研究综述 [J]. 岩石力学与工程学报, 2013, 32(6): 1081–1093. DOI: 10.3969/j.issn.1000-6915.2013.06.001.

    ZHOU C B. A prospect of researches on life-cycle safety control on high-steep rock slopes in hydropower engineering [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(6): 1081–1093. DOI: 10.3969/j.issn.1000-6915.2013.06.001.
    [2]
    李韬, 徐奴文, 戴峰, 等. 白鹤滩水电站左岸坝肩开挖边坡稳定性分析 [J]. 岩土力学, 2018, 39(2): 665–674. DOI: 10.16285/j.rsm.2016.0387.

    LI T, XU N W, DAI F, et al. Stability analysis of left bank abutment slope at Baihetan hydropower station subjected to excavation [J]. Rock and Soil Mechanics, 2018, 39(2): 665–674. DOI: 10.16285/j.rsm.2016.0387.
    [3]
    代金豪, 杨建华, 胡英国, 等. 爆破荷载诱发节理岩体边坡位移突变的能量机理研究 [J]. 长江科学院院报, 2021, 38(2): 100–106. DOI: 10.11988/ckyyb.20191239.

    DAI J H, YANG J H, HU Y G, et al. Energy mechanism of displacement's abrupt change caused by blasting load in jointed rock mass slopes [J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(2): 100–106. DOI: 10.11988/ckyyb.20191239.
    [4]
    马冲, 詹红兵, 姚文敏, 等. 爆破振动作用下含软弱夹层边坡稳定性及安全判据 [J]. 爆炸与冲击, 2018, 38(3): 563–571. DOI: 10.11883/bzycj-2016-0275.

    MA C, ZHAN H B, YAO W M, et al. Stability and safety criterion of a slope with weak interlayer under blasting vibration [J]. Explosion and Shock Waves, 2018, 38(3): 563–571. DOI: 10.11883/bzycj-2016-0275.
    [5]
    丁秀丽, 盛谦, 韩军, 等. 预应力锚索锚固机理的数值模拟试验研究 [J]. 岩石力学与工程学报, 2002, 21(7): 980–988. DOI: 10.3321/j.issn:1000-6915.2002.07.009.

    DING X L, SHENG Q, HAN J, et al. Numerical simulation testing study on reinforcement mechanism of prestressed anchorage cable [J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(7): 980–988. DOI: 10.3321/j.issn:1000-6915.2002.07.009.
    [6]
    李剑, 陈善雄, 余飞, 等. 预应力锚索加固高陡边坡机制探讨 [J]. 岩土力学, 2020, 41(2): 707–713. DOI: 10.16285/j.rsm.2019.0034.

    LI J, CHEN S X, YU F, et al. Discussion on mechanism of reinforcing high and steep slope with prestressed anchor cable [J]. Rock and Soil Mechanics, 2020, 41(2): 707–713. DOI: 10.16285/j.rsm.2019.0034.
    [7]
    YOSHIDA H, HORII H. Excavation analysis of a large-scale underground power house cavern by micromechanics-based continuum model of jointed rock mass [J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(3/4): 352.e1–352.e30. DOI: 10.1016/S1365-1609(97)00288-8.
    [8]
    SHENG Q, YUE Z Q, LEE C F, et al. Estimating the excavation disturbed zone in the permanent shiplock slopes of the Three Gorges Project, China [J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(2): 165–184. DOI: 10.1016/S1365-1609(02)00015-1.
    [9]
    卢文波, 周创兵, 陈明, 等. 开挖卸荷的瞬态特性研究 [J]. 岩石力学与工程学报, 2008, 27(11): 2184–2192. DOI: 10.3321/j.issn:1000-6915.2008.11.003.

    LU W B, ZHOU C B, CHEN M, et al. Research on transient characteristics of excavation unloading [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(11): 2184–2192. DOI: 10.3321/j.issn:1000-6915.2008.11.003.
    [10]
    罗忆, 卢文波, 陈明, 等. 开挖瞬态卸荷引起的节理岩体松动模拟试验 [J]. 岩石力学与工程学报, 2015, 34(S1): 2941–2947. DOI: 10.13722/j.cnki.jrme.2014.0591.

    LUO Y, LU W B, CHEN M, et al. Simulation experiment of rockmass loosening induced by excavation load transient unloading [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 2941–2947. DOI: 10.13722/j.cnki.jrme.2014.0591.
    [11]
    GRAN J K, SENSENY P E, GROETHE M A, et al. Dynamic response of an opening in jointed rock [J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(8): 1021–1035. DOI: 10.1016/S0148-9062(98)00163-6.
    [12]
    金李, 卢文波, 陈明, 等. 节理岩体的爆破松动机理 [J]. 爆炸与冲击, 2009, 29(5): 474–480. DOI: 10.11883/1001-1455(2009)05-0474-07.

    JIN L, LU W B, CHEN M, et al. Mechanism of jointed rock loosing under blasting load [J]. Explosion and Shock Waves, 2009, 29(5): 474–480. DOI: 10.11883/1001-1455(2009)05-0474-07.
    [13]
    YANG G H, ZHONG Z H, ZHANG Y C, et al. Optimal design of anchor cables for slope reinforcement based on stress and displacement fields [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(4): 411–420. DOI: 10.1016/j.jrmge.2015.04.004.
    [14]
    黄润秋. 中国西南岩石高边坡的主要特征及其演化 [J]. 地球科学进展, 2005, 20(3): 292–297. DOI: 10.3321/j.issn:1001-8166.2005.03.005.

    HUANG R Q. Main characteristics of high rock slopes in Southwestern China and their dynamic evolution [J]. Advances in Earth Science, 2005, 20(3): 292–297. DOI: 10.3321/j.issn:1001-8166.2005.03.005.
    [15]
    刘国锋, 冯夏庭, 江权, 等. 白鹤滩大型地下厂房开挖围岩片帮破坏特征、规律及机制研究 [J]. 岩石力学与工程学报, 2016, 35(5): 865–878. DOI: 10.13722/j.cnki.jrme.2015.0933.

    LIU G F, FENG X T, JIANG Q, et al. Failure characteristics, laws and mechanisms of rock spalling in excavation of large-scale underground powerhouse caverns in Baihetan [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(5): 865–878. DOI: 10.13722/j.cnki.jrme.2015.0933.
    [16]
    YANG J H, JIANG Q H, ZHANG Q B, et al. Dynamic stress adjustment and rock damage during blasting excavation in a deep-buried circular tunnel [J]. Tunnelling and Underground Space Technology, 2018, 71: 591–604. DOI: 10.1016/j.tust.2017.10.010.
    [17]
    陈洋, 吴亮, 陈明, 等. 高应力岩体爆破卸荷过程中应变率及应变能特征 [J]. 爆炸与冲击, 2019, 39(10): 103202. DOI: 10.11883/bzycj-2018-0225.

    CHEN Y, WU L, CHEN M, et al. Characteristics of strain rate and strain energy during blasting unloading of high stress rock mass [J]. Explosion and Shock Waves, 2019, 39(10): 103202. DOI: 10.11883/bzycj-2018-0225.
    [18]
    杨建华, 孙文彬, 姚池, 等. 高地应力岩体多孔爆破破岩机制 [J]. 爆炸与冲击, 2020, 40(7): 075202. DOI: 10.11883/bzycj-2019-0427.

    YANG J H, SUN W B, YAO C, et al. Mechanism of rock fragmentation by multi-hole blasting in highly-stressed rock masses [J]. Explosion and Shock Waves, 2020, 40(7): 075202. DOI: 10.11883/bzycj-2019-0427.
    [19]
    中国电建集团华东勘测设计研究院有限公司. 金沙江白鹤滩水电站左右岸600 m高程以上坝肩开挖及支护工程招标设计报告 [R]. 杭州: 中国电建集团华东勘测设计研究院有限公司, 2013.
    [20]
    Itasca Consulting Group Inc. FLAC3D user’s guide, version 5.01 [Z]. Minneapolis, USA: Itasca, 2013.
    [21]
    BLAIR D P. Acoustic pulse transmission in half-spaces and finite-length cylindrical rods [J]. Geophysics, 1985, 50(11): 1676–1683. DOI: 10.1190/1.1441858.
    [22]
    DUAN B F, XIA H L, YANG X X. Impacts of bench blasting vibration on the stability of the surrounding rock masses of roadways [J]. Tunnelling and Underground Space Technology, 2018, 71: 605–622. DOI: 10.1016/j.tust.2017.10.012.
    [23]
    YILMAZ O, UNLU T. Three dimensional numerical rock damage analysis under blasting load [J]. Tunnelling and Underground Space Technology, 2013, 38: 266–278. DOI: 10.1016/j.tust.2013.07.007.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (270) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return