Volume 42 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
WANG Yin, KONG Xiangzhen, FANG Qin, HONG Jian, ZHAI Yangxiu. Numerical investigation on damage and failure of concrete targets subjected to projectile penetration followed by explosion[J]. Explosion And Shock Waves, 2022, 42(1): 013301. doi: 10.11883/bzycj-2021-0132
Citation: WANG Yin, KONG Xiangzhen, FANG Qin, HONG Jian, ZHAI Yangxiu. Numerical investigation on damage and failure of concrete targets subjected to projectile penetration followed by explosion[J]. Explosion And Shock Waves, 2022, 42(1): 013301. doi: 10.11883/bzycj-2021-0132

Numerical investigation on damage and failure of concrete targets subjected to projectile penetration followed by explosion

doi: 10.11883/bzycj-2021-0132
  • Received Date: 2021-04-14
  • Accepted Date: 2021-12-01
  • Rev Recd Date: 2021-05-24
  • Available Online: 2021-12-02
  • Publish Date: 2022-01-20
  • Based on the recently proposed Kong-Fang concrete material model and the fluid structure interaction (FSI) and restart algorithms available in the LS-DYNA, the damage and failure of concrete targets subjected to projectile penetration followed by explosion were numerically investigated. The numerical model, material models along with the corresponding parameters were firstly validated by comparing the numerical simulation results of the large-caliber projectile penetration experiment and the charge explosion test of a concrete target with a precast hole to the corresponding test data in terms of the penetration depth and scabbing depth, respectively. Then numerical simulations of the damage and failure in concrete targets struck by a typical warhead were conducted using three different modeling methods, i.e., charge explosion in a concrete target with a precast hole, charge explosions without and with projectile shell using the restart algorithm. The numerical results demonstrate that the crater diameter of the concrete target caused by explosion is only three times the projectile diameter when the pre-damage during the penetration process is not considered, and the damage and failure patterns are different from those using the other two methods. The numerically predicted crater diameter is very large when considering the pre-damage during the penetration process, as expected. However, the final crater diameter when the projectile shell is considered (about 14.5 times the projectile diameter) was slightly smaller than that without the consideration of projectile shell (around 16 times the projectile diameter), which mainly because part of the explosion energy is dissipated by the deformation and fracture of the projectile shell. The predicted crater depth with the consideration of projectile shell is increased by 5% compared with that ignoring the projectile shell, mainly due to the secondary penetration of the fragmentized warhead. The present numerical results can provide a reliable reference for further experimental investigation on the damage and failure of concrete targets subjected to projectile penetration followed by explosion.
  • loading
  • [1]
    FANG Q, WU H. Concrete structures under projectile impact [M]. Singapore: Springer, 2017: 255−321.
    [2]
    WU H, PENG Y, KONG X Z. Notes on projectile impact analyses [M]. Singapore: Springer, 2019: 167−240.
    [3]
    左魁, 张继春, 曾宪明, 等. 重复爆炸条件下地冲击效应试验研究 [J]. 岩石力学与工程学报, 2007, 26(S1): 3378–3383. DOI: 10.3321/j.issn:1000-6915.2007.z1.119.

    ZUO K, ZHANG J C, ZENG X M, et al. Experimental study on underground shock effects under repeated explosions [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 3378–3383. DOI: 10.3321/j.issn:1000-6915.2007.z1.119.
    [4]
    左魁, 张继春, 王启睿, 等. 重复爆炸条件下岩石介质破坏效应试验研究 [J]. 岩石力学与工程学报, 2008, 27(1): 2675–2680.

    ZUO K, ZHANG J C, WANG Q R, et al. Experimental research on rock breakage effect under repeated explosions [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(1): 2675–2680.
    [5]
    LAI J Z, GUO X J, ZHU Y Y. Repeated penetration and different depth explosion of ultra-high performance concrete [J]. International Journal of Impact Engineering, 2015, 84: 1–12. DOI: 10.1016/j.ijimpeng.2015.05.006.
    [6]
    左魁, 曾宪明, 王启睿, 等. 钻地模型弹对岩石模拟材料二次侵彻试验 [J]. 解放军理工大学学报(自然科学版), 2007, 8(6): 626–629. DOI: 10.3969/j.issn.1009-3443.2007.06.012.

    ZUO K, ZENG X M, WANG Q R, et al. Second time penetration of earth-penetrating model projectile in rock medium [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2007, 8(6): 626–629. DOI: 10.3969/j.issn.1009-3443.2007.06.012.
    [7]
    左魁, 张继春, 曾宪明, 等. BLU-109B模型弹在岩石介质中成坑效应试验研究 [J]. 岩石力学与工程学报, 2007, 26(S1): 2767–2771. DOI: 10.3321/j.issn:1000-6915.2007.z1.027.

    ZUO K, ZHANG J C, ZENG X M, et al. Experimental study on formation of craters in rock with BLU-109B earth penetrating model projectiles [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 2767–2771. DOI: 10.3321/j.issn:1000-6915.2007.z1.027.
    [8]
    邓国强, 杨秀敏. 钻地弹重复打击效应现场试验研究 [J]. 防护工程, 2012, 34(5): 1–5.

    DENG G Q, YANG X M. Experimental investigation into damage effects of repeated attacks of precision-guided penetration weapons [J]. Protective Engineering, 2012, 34(5): 1–5.
    [9]
    梁龙河, 王政, 曹菊珍. 长杆弹对混凝土的侵爆效应 [J]. 爆炸与冲击, 2008, 28(5): 415–420. DOI: 10.11883/1001-1455(2008)05-0415-06.

    LIANG L H, WANG Z, CAO J Z. Damaging effect of concrete by penetration and explosion of a long-rod projectile [J]. Explosion and Shock Waves, 2008, 28(5): 415–420. DOI: 10.11883/1001-1455(2008)05-0415-06.
    [10]
    曾亮, 王伟力, 朱建方. BLU-113钻地战斗部侵彻爆炸联合效应数值模拟 [C]//第七届全国工程结构安全防护学术会议论文集. 宁波: 中国力学学会, 2009: 210−214.
    [11]
    杨广栋, 王高辉, 卢文波, 等. 侵彻与爆炸联合作用下混凝土靶体的毁伤效应分析 [J]. 中南大学学报(自然科学版), 2017, 48(12): 3284–3292. DOI: 10.11817/j.issn.1672-7207.2017.12.020.

    YANG G D, WANG G H, LU W B, et al. Damage characteristics of concrete structures under the combined loadings of penetration and explosion [J]. Journal of Central South University (Science and Technology), 2017, 48(12): 3284–3292. DOI: 10.11817/j.issn.1672-7207.2017.12.020.
    [12]
    YANG G D, WANG G H, LU W B, et al. Combined effects of penetration and explosion on damage characteristics of a mass concrete target [J]. Journal of Vibroengineering, 2018, 20(4): 1632–1651. DOI: 10.21595/jve.2017.18522.
    [13]
    冯春, 李世海, 郝卫红, 等. 基于CDEM的钻地弹侵彻爆炸全过程数值模拟研究 [J]. 振动与冲击, 2017, 36(13): 11–18; 26. DOI: 10.13465/j.cnki.jvs.2017.13.002.

    FENG C, LI S H, HAO W H, et al. Numerical simulation for penetrating and blasting process of EPW based on CDEM [J]. Journal of Vibration and Shock, 2017, 36(13): 11–18; 26. DOI: 10.13465/j.cnki.jvs.2017.13.002.
    [14]
    邓国强, 杨秀敏. 工程岩体中多弹重复打击效应的数值模拟分析 [J]. 爆炸与冲击, 2014, 34(3): 361–366. DOI: 10.11883/1001-1455(2014)03-0361-06.

    DENG G Q, YANG X M. Numerical simulation of the effect of multiply EPW into engineering rock [J]. Explosion and Shock Waves, 2014, 34(3): 361–366. DOI: 10.11883/1001-1455(2014)03-0361-06.
    [15]
    KONG X Z, FANG Q, CHEN L, et al. A new material model for concrete subjected to intense dynamic loadings [J]. International Journal of Impact Engineering, 2018, 120: 60–78. DOI: 10.1016/j.ijimpeng.2018.05.006.
    [16]
    ZHANG S B, KONG X Z, FANG Q, et al. Numerical prediction of dynamic failure in concrete targets subjected to projectile impact by a modified Kong-Fang material model [J]. International Journal of Impact Engineering, 2020, 144: 103633. DOI: 10.1016/j.ijimpeng.2020.103633.
    [17]
    WANG Y, KONG X Z, FANG Q, et al. Modelling damage mechanisms of concrete under high confinement pressure [J]. International Journal of Impact Engineering, 2021, 150: 103815. DOI: 10.1016/j.ijimpeng.2021.103815.
    [18]
    HUANG X P, KONG X Z, CHEN Z Y, et al. A computational constitutive model for rock in hydrocode [J]. International Journal of Impact Engineering, 2020, 145: 103687. DOI: 10.1016/j.ijimpeng.2020.103687.
    [19]
    YANG S B, KONG X Z, WU H, et al. Constitutive modelling of UHPCC material under impact and blast loadings [J]. International Journal of Impact Engineering, 2021, 153: 103860. DOI: 10.1016/j.ijimpeng.2021.103860.
    [20]
    HUANG X P, KONG X Z, HU J, et al. The influence of free water content on ballistic performances of concrete targets [J]. International Journal of Impact Engineering, 2020, 139: 103530. DOI: 10.1016/j.ijimpeng.2020.103530.
    [21]
    KONG X Z, FANG Q, ZHANG J H, et al. Numerical prediction of dynamic tensile failure in concrete by a corrected strain-rate dependent nonlocal material model [J]. International Journal of Impact Engineering, 2020, 137: 103445. DOI: 10.1016/j.ijimpeng.2019.103445.
    [22]
    中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010−2010 [S]. 北京: 中国建筑工业出版社, 2015: 209−215.
    [23]
    KONG X Z, FANG Q, WU H, et al. Numerical predictions of cratering and scabbing in concrete slabs subjected to projectile impact using a modified version of HJC material model [J]. International Journal of Impact Engineering, 2016, 95: 61–71. DOI: 10.1016/j.ijimpeng.2016.04.014.
    [24]
    KONG X Z, FANG Q, LI Q M, et al. Modified K&C model for cratering and scabbing of concrete slabs under projectile impact [J]. International Journal of Impact Engineering, 2017, 108: 217–228. DOI: 10.1016/j.ijimpeng.2017.02.016.
    [25]
    MAY P I, FORMATN K. LS-DYNA® keyword user’s manual: version 971 [M]. Livermore, USA: Livermore Software Technology Corporation, 2007.
    [26]
    逄高伟, 方秦, 孔祥振, 等. WDU-34/B战斗部侵彻块石遮弹层的数值模拟研究 [J]. 防护工程, 2020, 42(4): 15–22.

    PANG G W, FANG Q, KONG X Z, et al. Numerical simulation of WDU-34/B warhead penetrating into rubble burster layer [J]. Protective Engineering, 2020, 42(4): 15–22.
    [27]
    RABCZUK T, BELYTSCHKO T. A three-dimensional large deformation meshfree method for arbitrary evolving cracks [J]. Computer Methods in Applied Mechanics and Engineering, 2007, 196(29/30): 2777–2799. DOI: 10.1016/j.cma.2006.06.020.
    [28]
    张海英, 段卓平, 刘彦, 等. 有限厚混凝土靶内部爆炸震塌贯穿研究 [J]. 北京理工大学学报, 2013, 33(5): 441–444; 550. DOI: 10.3969/j.issn.1001-0645.2013.05.001.

    ZHANG H Y, DUAN Z P, LIU Y, et al. Study on the collapse perforation of thick concrete targets under internal explosion [J]. Transactions of Beijing Institute of Technology, 2013, 33(5): 441–444; 550. DOI: 10.3969/j.issn.1001-0645.2013.05.001.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(1)

    Article Metrics

    Article views (686) PDF downloads(230) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return