Volume 42 Issue 3
Apr.  2022
Turn off MathJax
Article Contents
LI Xuejiao, WU Yong, WANG Qi, GAO Yugang, WANG Quan, WANG Yixin, MA Honghao. Study on energy output characteristics of underwater explosion of energetic microballoon sensitized emulsion explosive[J]. Explosion And Shock Waves, 2022, 42(3): 032301. doi: 10.11883/bzycj-2021-0188
Citation: LI Xuejiao, WU Yong, WANG Qi, GAO Yugang, WANG Quan, WANG Yixin, MA Honghao. Study on energy output characteristics of underwater explosion of energetic microballoon sensitized emulsion explosive[J]. Explosion And Shock Waves, 2022, 42(3): 032301. doi: 10.11883/bzycj-2021-0188

Study on energy output characteristics of underwater explosion of energetic microballoon sensitized emulsion explosive

doi: 10.11883/bzycj-2021-0188
  • Received Date: 2021-05-13
  • Rev Recd Date: 2021-09-22
  • Available Online: 2022-03-17
  • Publish Date: 2022-04-07
  • A new emulsion explosive was obtained by introducing energetic microballoons containing alkane into emulsion matrix. Energetic microballoons were foamed in a constant temperature environment of 90 ℃ for 5 min to reach the maximum volume, and then energetic microballoons were mixed with emulsion matrix to prepare emulsion explosive with the energetic microballoon contents from 0.2% to 7%. The detonation velocity of emulsion explosives with different microballoons was measured by detonation velocity meter. In a steel explosion vessel with a diameter of 5 m and a depth of 5 m, the explosives were placed at a depth of 3 m, which were 0.8, 1.0, 1.2 and 1.4 m away from sensor. The underwater explosion pressure-time curve of emulsion explosive with microballoon contents from 0.2% to 7% was obtained through underwater explosion experiment. The parameters of underwater explosion, such as shock wave peak pressure, specific shock wave energy, specific bubble energy and specific explosion energy, were obtained by analysis and calculation, which was used to explore the influence of energetic microballoon contents on the underwater explosion property of explosive. The results show that the peak pressure of emulsion explosive with microballoon content of 0.2% is the largest and decreases with the increase of microballoon contents at the same testing distance. The specific bubble energy of emulsion explosive increases firstly and then decreases with the increase of the microballoon contents, and the specific bubble energy is the largest when the microballoon content is 4%. The specific shock wave energy and specific explosion energy decrease as microballoon contents increase. The attenuation rate of underwater shock wave peak pressure is negatively correlated with propagation distance. However, the specific shock wave energy, special bubble energy and special explosion energy do not change with the increase of propagation distance.
  • loading
  • [1]
    汪旭光. 乳化炸药 [M]. 北京: 冶金工业出版社, 1993: 1−15.
    [2]
    LOUREIRO A, MENDES R, RIBEIRO J B, et al. Effect of explosive mixture on quality of explosive welds of copper to aluminium [J]. Materials & Design, 2016, 95: 256–267. DOI: 10.1016/j.matdes.2016.01.116.
    [3]
    BIEGAŃSKA J. Using nitrocellulose powder in emulsion explosives [J]. Combustion, Explosion, and Shock Waves, 2011, 47(3): 366–368. DOI: 10.1134/S0010508211030154.
    [4]
    张学民, 周贤舜, 王立川, 等. 大断面隧道钻爆冲击波的衰减规律 [J]. 爆炸与冲击, 2020, 40(2): 025101. DOI: 10.11883/bzycj-2019-0045.

    ZHANG X M, ZHOU X S, WANG L C, et al. Attenuation of blast wave in a large-section tunnel [J]. Explosion and Shock Waves, 2020, 40(2): 025101. DOI: 10.11883/bzycj-2019-0045.
    [5]
    MISHRA A, ROUT M, SINGH D R, et al. Influence of density of emulsion explosives on its velocity of detonation and fragmentation of blasted muckpile [J]. Current Science, 2017, 112(3): 602–608. DOI: 10.18520/cs/v112/i03/602-608.
    [6]
    CHENG Y F, MENG X R, FENG C T, et al. The effect of the hydrogen containing material TiH2 on the detonation characteristics of emulsion explosives [J]. Propellants, Explosives, Pyrotechnics, 2017, 42(6): 585–591. DOI: 10.1002/prep.201700045.
    [7]
    钱海, 吴红波, 邢化岛, 等. 铝粉含量和粒径对乳化炸药作功能力的影响 [J]. 火炸药学报, 2017, 40(1): 40–44. DOI: 10.14077/j.issn.1007-7812.2017.01.008.

    QIAN H, WU H B, XING H D, et al. Effect of aluminum content and particle size on the power of emulsion explosives [J]. Chinese Journal of Explosives & Propellants, 2017, 40(1): 40–44. DOI: 10.14077/j.issn.1007-7812.2017.01.008.
    [8]
    陈海军, 马宏昊, 沈兆武, 等. 钛基纤维炸药水下爆炸性能的初步分析 [J]. 爆炸与冲击, 2018, 38(1): 9–18. DOI: 10.11883/bzycj-2017-0155.

    CHEN H J, MA H H, SHEN Z W, et al. Preliminary analysis of underwater detonation performance of titanium fiber explosive [J]. Explosion and Shock Waves, 2018, 38(1): 9–18. DOI: 10.11883/bzycj-2017-0155.
    [9]
    程扬帆, 汪泉, 龚悦, 等. 敏化方式对MgH2型储氢乳化炸药爆轰性能的影响 [J]. 含能材料, 2017, 25(2): 167–172. DOI: 10.11943/j.issn.1006-9941.2017.02.013.

    CHENG Y F, WANG Q, GONG Y, et al. Effect of sensitizing methods on the detonation performances of MgH2-based hydrogen storage emulsion explosives [J]. Chinese Journal of Energetic Materials, 2017, 25(2): 167–172. DOI: 10.11943/j.issn.1006-9941.2017.02.013.
    [10]
    SIL’VESTROV V V, BORDZILOVSKII S A, KARAKHANOV S M, et al. Temperature of the detonation front of an emulsion explosive [J]. Combustion, Explosion, and Shock Waves, 2015, 51(1): 116–123. DOI: 10.1134/S0010508215010128.
    [11]
    FANG H, CHENG Y F, TAO C, et al. Effects of content and particle size of cenospheres on the detonation characteristics of emulsion explosive [J]. Journal of Energetic Materials, 2021, 39(2): 197–214. DOI: 10.1080/07370652.2020.1770896.
    [12]
    WANG Y X, MA H H, SHEN Z W, et al. Influence of different gases on the performance of gas-storage glass microballoons in emulsion explosives [J]. Propellants, Explosives, Pyrotechnics, 2020, 45(10): 1566–1572. DOI: 10.1002/prep.202000105.
    [13]
    YUNOSHEV A S, PLASTININ A V, RAFEICHIK S I. Detonation velocity of an emulsion explosive sensitized with polymer microballoons [J]. Combustion, Explosion, and Shock Waves, 2017, 53(6): 738–743. DOI: 10.1134/S0010508217060168.
    [14]
    BARNES R A, HETHERINGTON J G, SMITH P D. The design and instrumentation of a simple system for demonstrating underwater explosive effects [J]. Propellants, Explosives, Pyrotechnics, 1988, 13(1): 13–16. DOI: 10.1002/prep.19880130104.
    [15]
    COLE R H. Underwater explosions [M]. Princeton: Princeton University Press, 1948: 110−113.
    [16]
    BJARNHOLT G. Suggestions on standards for measurement and data evaluation in the underwater explosion test [J]. Propellants, Explosives, Pyrotechnics, 1980, 5(2−3): 67–74. DOI: 10.1002/prep.19800050213.
    [17]
    薛冰. RDX基金属氢化物混合炸药爆炸及安全性能研究 [D]. 合肥: 中国科学技术大学, 2017: 72−73.

    XUE B. Explosion and safety performance of RDX-based metal hydride composite explosives [D]. Hefei: University of Science and Technology of China, 2017: 72−73.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(5)

    Article Metrics

    Article views (344) PDF downloads(63) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return