| Citation: | ZHANG Pinliang, CAO Yan, CHEN Chuan, SONG Guangming, WU Qiang, LI Yu, GONG Zizheng, LI Ming. Ballistic limit of an impedance-graded-material enhanced Whipple shield[J]. Explosion And Shock Waves, 2022, 42(2): 023301. doi: 10.11883/bzycj-2021-0230 | 
 
	                | [1] | WHIPPLE F L. Meteorites and space travel [J]. Astronomical Journal, 1947, 52(5): 131. DOI:  10.1086/106009. | 
| [2] | SCHMIDT R M, HOUSEN K R, BJORKMAN M D, et al. Advanced all-metal orbital debris shield performance at 7 to 17 km/s [J]. International Journal of Impact Engineering, 1995, 17(4): 719–730. DOI:  10.1016/0734-743X(95)99894-W. | 
| [3] | 郭运佳, 文雪忠, 黄洁, 等. 不同填充层材料的空间碎片防护结构性能试验研究 [J]. 航天器环境工程, 2020, 37(6): 589–595. DOI:  10.12126/see.2020.06.009. GUO Y J, WEN X Z, HUANG J, et al. Experimental study of shielding performance of protecting structures stuffed with different materials [J]. Spacecraft Environment Engineering, 2020, 37(6): 589–595. DOI:  10.12126/see.2020.06.009. | 
| [4] | 黄鑫, 凌中, 刘宗德, 等. 梯度复合Whipple防护结构的超高速撞击实验 [J]. 爆炸与冲击, 2013, 33(S1): 92–98. HUANG X, LING Z, LIU Z D, et al. Hypervelocity impact experiments on new gradient Whipple shield structure [J]. Explosion and Shock Waves, 2013, 33(S1): 92–98. | 
| [5] | HOFMANN D C, HAMILL L, CHRISTIANSEN E, et al. Hypervelocity impact testing of a metallic glass-stuffed Whipple shield [J]. Advanced Engineering Materials, 2015, 17(9): 1313–1322. DOI:  10.1002/adem.201400518. | 
| [6] | PUTZAR R, ZHENG S G, AN J, et al. A stuffed Whipple shield for the Chinese space station [J]. International Journal of Impact Engineering, 2019, 132: 103304. DOI:  10.1016/j.ijimpeng.2019.05.018. | 
| [7] | CHRISTIANSEN E L. Meteoroid/debris shielding [R]. Houston, USA: NASA, 2003. | 
| [8] | CHRISTIANSEN E L, NAGY K, LEAR D M, et al. Space station MMOD shielding [J]. Acta Astronautica, 2009, 65(7/8): 921–929. DOI:  10.1016/j.actaastro.2008.01.046. | 
| [9] | ZHANG P L, GONG Z Z, TIAN D B, et al. Comparison of shielding performance of Al/Mg impedance-graded-material-enhanced and aluminum Whipple shields [J]. International Journal of Impact Engineering, 2019, 126: 101–108. DOI:  10.1016/j.ijimpeng.2018.12.007. | 
| [10] | 张品亮, 宋光明, 龚自正, 等. Al/Mg波阻抗梯度材料加强型Whipple结构超高速撞击特性研究 [J]. 爆炸与冲击, 2019, 39(12): 125101. DOI:  10.11883/bzycj-2018-0461. ZHANG P L, SONG G M, GONG Z Z, et al. Shielding performances of a Whipple shield enhanced by Al/Mg impedance-graded materials [J]. Explosion and Shock Waves, 2019, 39(12): 125101. DOI:  10.11883/bzycj-2018-0461. | 
| [11] | HUANG X, LING Z, LIU Z D, et al. Amorphous alloy reinforced Whipple shield structure [J]. International Journal of Impact Engineering, 2012, 42: 1–10. DOI:  10.1016/j.ijimpeng.2011.11.001. | 
| [12] | ZHANG P L, XU K B, LI M, et al. Study of the shielding performance of a Whipple shield enhanced by Ti-Al-nylon impedance-graded materials [J]. International Journal of Impact Engineering, 2019, 124: 23–30. DOI:  10.1016/j.ijimpeng.2018.08.005. | 
| [13] | 宋光明, 李明, 武强, 等. 超高速撞击下波阻抗梯度防护结构碎片云特性研究 [J]. 爆炸与冲击, 2021, 41(2): 021405. DOI:  10.11883/bzycj-2020-0299. SONG G M, LI M, WU Q, et al. Debris cloud characteristics of graded-impedance shields under hypervelocity impact [J]. Explosion and Shock Waves, 2021, 41(2): 021405. DOI:  10.11883/bzycj-2020-0299. | 
| [14] | LONG L P, PENG Y B, ZHOU W, et al. Study on hypervelocity impact characteristics of Ti/Al/Mg density-graded materials [J]. Metals, 2020, 10(5): 697. DOI:  10.3390/met10050697. | 
| [15] | LONG L P, LIU W S, MA Y Z, et al. Microstructure and diffusion behaviors of the diffusion bonded Mg/Al joint [J]. High Temperature Materials and Processes, 2017, 36(9): 897–903. DOI:  10.1515/htmp-2016-0023. | 
| [16] | PIEKUTOWSKI A J, POORMON K L. Impact of thin aluminum sheets with aluminum spheres up to 9 km/s [J]. International Journal of Impact Engineering, 2008, 35(12): 1716–1722. DOI:  10.1016/j.ijimpeng.2008.07.023. | 
| [17] | GRADY D E, KIPP M E. Experimental measurement of dynamic failure and fragmentation properties of metals [J]. International Journal of Solids and Structures, 1995, 32(17): 2779–2791. DOI:  10.1016/0020-7683(94)00297-A. | 
| [18] | MEYERS M A. 材料的动力学行为 [M]. 张庆明, 刘彦, 黄风雷, 等, 译. 北京: 国防工业出版社, 2006: 83. | 
| [19] | 谭华. 实验冲击波物理导引 [M]. 北京: 国防工业出版社, 2007. | 
| [20] | 经福谦. 实验物态方程导引 [M]. 2版. 北京: 科学出版社, 1999. | 
| [21] | MARSH S P. LASL shock hugoniot data [M]. California, USA: University of California, 1980. | 
| [22] | ANDERSON C E Jr, TRUCANO T G, MULLIN S A. Debris cloud dynamics [J]. International Journal of Impact Engineering, 1990, 9(1): 89–113. DOI:  10.1016/0734-743X(90)90024-P. | 
| [23] | MCQUEEN R G, MARSH S P. Equation of state for nineteen metallic elements from shock-wave measurements to two megabars [J]. Journal of Applied Physics, 1960, 31(7): 1253–1269. DOI:  10.1063/1.1735815. | 
| [24] | 徐锡申, 张万箱. 实用物态方程理论导引 [M]. 北京: 科学出版社, 1986. | 
| [25] | CHRISTIANSEN E L, KERR J H. Ballistic limit equations for spacecraft shielding [J]. International Journal of Impact Engineering, 2001, 26(1−10): 93–104. DOI:  10.1016/S0734-743X(01)00070-7. | 
| [26] | SCHONBERG W P. Using modified ballistic limit equations in spacecraft risk assessments [J]. Acta Astronautica, 2016, 126: 199–204. DOI:  10.1016/j.actaastro.2016.03.038. | 
