Volume 42 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
ZHANG Pinliang, CAO Yan, CHEN Chuan, SONG Guangming, WU Qiang, LI Yu, GONG Zizheng, LI Ming. Ballistic limit of an impedance-graded-material enhanced Whipple shield[J]. Explosion And Shock Waves, 2022, 42(2): 023301. doi: 10.11883/bzycj-2021-0230
Citation: ZHANG Pinliang, CAO Yan, CHEN Chuan, SONG Guangming, WU Qiang, LI Yu, GONG Zizheng, LI Ming. Ballistic limit of an impedance-graded-material enhanced Whipple shield[J]. Explosion And Shock Waves, 2022, 42(2): 023301. doi: 10.11883/bzycj-2021-0230

Ballistic limit of an impedance-graded-material enhanced Whipple shield

doi: 10.11883/bzycj-2021-0230
  • Received Date: 2021-06-04
  • Accepted Date: 2021-12-02
  • Rev Recd Date: 2021-08-10
  • Available Online: 2021-12-06
  • Publish Date: 2022-02-28
  • Impedance-graded-material enhanced Whipple shields have excellent protective performance. The purpose of this paper is to study the ballistic limit of Ti/Al/Mg shields, which is an improved impedance-graded-material enhanced Whipple shield. Hypervelocity impact experiments on Ti/Al/Mg, Al/Mg and 2A12 shields were performed using a two-stage light-gas gun at impact velocities of 3.0–8.0 km/s. The hypervelocity impact characteristics, the ballistic limit curve and shielding performance of the Ti/Al/Mg shields were studied. The reason of its excellent performance is explained by comparative analysis. As the impact velocity increases, the failure mode of the rear wall showed a detached spall or tearing damage instead of tiny perforations similar to an aluminum shield. The results show that a high-acoustic-impedance titanium alloy layer can generate higher shock pressures and induce a greater temperature increase, which is more effective for fragmenting an impacting projectile. The shock pressure and specific internal energy in the projectile increased by 23.0% and 30.7% compared to the aluminum on aluminum impact event at 8.0 km/s, respectively. The shielding capability of a Ti/Al/Mg shield is significantly greater than that of 2A12 and Al/Mg shields when the bumper has the same areal density. The critical projectile diameter of Ti/Al/Mg shields is 6.58 mm at ~8.0 km/s, which is an improvement of approximately 34.8 % compared to the 4.88 mm of aluminum shields. Finally, to explore the transition velocities of the ballistic limit curve of the Ti/Al/Mg shields, a theoretical analysis was conducted, which suggests that for an aluminum projectile impacting a Ti/Al/Mg bumper, this value might be <7.0 km/s. However, a transition point is not apparent in the experimental ballistic limit curve, and the critical projectile diameter increases with increasing velocity in the range of 3.0–8.0 km/s. It is different from the typical Whipple shield. Further hypervelocity impact tests and additional research needs to be conducted to study in detail the ballistic limit of the Ti/Al/Mg shields.
  • loading
  • [1]
    WHIPPLE F L. Meteorites and space travel [J]. Astronomical Journal, 1947, 52(5): 131. DOI: 10.1086/106009.
    [2]
    SCHMIDT R M, HOUSEN K R, BJORKMAN M D, et al. Advanced all-metal orbital debris shield performance at 7 to 17 km/s [J]. International Journal of Impact Engineering, 1995, 17(4): 719–730. DOI: 10.1016/0734-743X(95)99894-W.
    [3]
    郭运佳, 文雪忠, 黄洁, 等. 不同填充层材料的空间碎片防护结构性能试验研究 [J]. 航天器环境工程, 2020, 37(6): 589–595. DOI: 10.12126/see.2020.06.009.

    GUO Y J, WEN X Z, HUANG J, et al. Experimental study of shielding performance of protecting structures stuffed with different materials [J]. Spacecraft Environment Engineering, 2020, 37(6): 589–595. DOI: 10.12126/see.2020.06.009.
    [4]
    黄鑫, 凌中, 刘宗德, 等. 梯度复合Whipple防护结构的超高速撞击实验 [J]. 爆炸与冲击, 2013, 33(S1): 92–98.

    HUANG X, LING Z, LIU Z D, et al. Hypervelocity impact experiments on new gradient Whipple shield structure [J]. Explosion and Shock Waves, 2013, 33(S1): 92–98.
    [5]
    HOFMANN D C, HAMILL L, CHRISTIANSEN E, et al. Hypervelocity impact testing of a metallic glass-stuffed Whipple shield [J]. Advanced Engineering Materials, 2015, 17(9): 1313–1322. DOI: 10.1002/adem.201400518.
    [6]
    PUTZAR R, ZHENG S G, AN J, et al. A stuffed Whipple shield for the Chinese space station [J]. International Journal of Impact Engineering, 2019, 132: 103304. DOI: 10.1016/j.ijimpeng.2019.05.018.
    [7]
    CHRISTIANSEN E L. Meteoroid/debris shielding [R]. Houston, USA: NASA, 2003.
    [8]
    CHRISTIANSEN E L, NAGY K, LEAR D M, et al. Space station MMOD shielding [J]. Acta Astronautica, 2009, 65(7/8): 921–929. DOI: 10.1016/j.actaastro.2008.01.046.
    [9]
    ZHANG P L, GONG Z Z, TIAN D B, et al. Comparison of shielding performance of Al/Mg impedance-graded-material-enhanced and aluminum Whipple shields [J]. International Journal of Impact Engineering, 2019, 126: 101–108. DOI: 10.1016/j.ijimpeng.2018.12.007.
    [10]
    张品亮, 宋光明, 龚自正, 等. Al/Mg波阻抗梯度材料加强型Whipple结构超高速撞击特性研究 [J]. 爆炸与冲击, 2019, 39(12): 125101. DOI: 10.11883/bzycj-2018-0461.

    ZHANG P L, SONG G M, GONG Z Z, et al. Shielding performances of a Whipple shield enhanced by Al/Mg impedance-graded materials [J]. Explosion and Shock Waves, 2019, 39(12): 125101. DOI: 10.11883/bzycj-2018-0461.
    [11]
    HUANG X, LING Z, LIU Z D, et al. Amorphous alloy reinforced Whipple shield structure [J]. International Journal of Impact Engineering, 2012, 42: 1–10. DOI: 10.1016/j.ijimpeng.2011.11.001.
    [12]
    ZHANG P L, XU K B, LI M, et al. Study of the shielding performance of a Whipple shield enhanced by Ti-Al-nylon impedance-graded materials [J]. International Journal of Impact Engineering, 2019, 124: 23–30. DOI: 10.1016/j.ijimpeng.2018.08.005.
    [13]
    宋光明, 李明, 武强, 等. 超高速撞击下波阻抗梯度防护结构碎片云特性研究 [J]. 爆炸与冲击, 2021, 41(2): 021405. DOI: 10.11883/bzycj-2020-0299.

    SONG G M, LI M, WU Q, et al. Debris cloud characteristics of graded-impedance shields under hypervelocity impact [J]. Explosion and Shock Waves, 2021, 41(2): 021405. DOI: 10.11883/bzycj-2020-0299.
    [14]
    LONG L P, PENG Y B, ZHOU W, et al. Study on hypervelocity impact characteristics of Ti/Al/Mg density-graded materials [J]. Metals, 2020, 10(5): 697. DOI: 10.3390/met10050697.
    [15]
    LONG L P, LIU W S, MA Y Z, et al. Microstructure and diffusion behaviors of the diffusion bonded Mg/Al joint [J]. High Temperature Materials and Processes, 2017, 36(9): 897–903. DOI: 10.1515/htmp-2016-0023.
    [16]
    PIEKUTOWSKI A J, POORMON K L. Impact of thin aluminum sheets with aluminum spheres up to 9 km/s [J]. International Journal of Impact Engineering, 2008, 35(12): 1716–1722. DOI: 10.1016/j.ijimpeng.2008.07.023.
    [17]
    GRADY D E, KIPP M E. Experimental measurement of dynamic failure and fragmentation properties of metals [J]. International Journal of Solids and Structures, 1995, 32(17): 2779–2791. DOI: 10.1016/0020-7683(94)00297-A.
    [18]
    MEYERS M A. 材料的动力学行为 [M]. 张庆明, 刘彦, 黄风雷, 等, 译. 北京: 国防工业出版社, 2006: 83.
    [19]
    谭华. 实验冲击波物理导引 [M]. 北京: 国防工业出版社, 2007.
    [20]
    经福谦. 实验物态方程导引 [M]. 2版. 北京: 科学出版社, 1999.
    [21]
    MARSH S P. LASL shock hugoniot data [M]. California, USA: University of California, 1980.
    [22]
    ANDERSON C E Jr, TRUCANO T G, MULLIN S A. Debris cloud dynamics [J]. International Journal of Impact Engineering, 1990, 9(1): 89–113. DOI: 10.1016/0734-743X(90)90024-P.
    [23]
    MCQUEEN R G, MARSH S P. Equation of state for nineteen metallic elements from shock-wave measurements to two megabars [J]. Journal of Applied Physics, 1960, 31(7): 1253–1269. DOI: 10.1063/1.1735815.
    [24]
    徐锡申, 张万箱. 实用物态方程理论导引 [M]. 北京: 科学出版社, 1986.
    [25]
    CHRISTIANSEN E L, KERR J H. Ballistic limit equations for spacecraft shielding [J]. International Journal of Impact Engineering, 2001, 26(1−10): 93–104. DOI: 10.1016/S0734-743X(01)00070-7.
    [26]
    SCHONBERG W P. Using modified ballistic limit equations in spacecraft risk assessments [J]. Acta Astronautica, 2016, 126: 199–204. DOI: 10.1016/j.actaastro.2016.03.038.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (415) PDF downloads(115) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return