Volume 42 Issue 10
Oct.  2022
Turn off MathJax
Article Contents
LIAO Huming, LI Bo, FAN Jiang, JIAO Lixin, YU Shuaichao, LIN Jianyu, PEI Xiaoyang. OTM analysis of debris cloud under hypervelocity impact[J]. Explosion And Shock Waves, 2022, 42(10): 103301. doi: 10.11883/bzycj-2021-0275
Citation: LIAO Huming, LI Bo, FAN Jiang, JIAO Lixin, YU Shuaichao, LIN Jianyu, PEI Xiaoyang. OTM analysis of debris cloud under hypervelocity impact[J]. Explosion And Shock Waves, 2022, 42(10): 103301. doi: 10.11883/bzycj-2021-0275

OTM analysis of debris cloud under hypervelocity impact

doi: 10.11883/bzycj-2021-0275
  • Received Date: 2021-07-01
  • Rev Recd Date: 2022-08-26
  • Available Online: 2022-09-08
  • Publish Date: 2022-10-31
  • The hypervelocity impact (HVI) of space debris is a typical extreme mechanics problem at high temperature, high pressure and high strain rate. The HVI involves the complex dynamic response of materials. Numerical methods have become very useful and important tools to predict the complex phenomena and look into the details of the entire process. However, the accurate simulation of the HVI is a grand challenge in scientific computing that places exacting demands on physics models, numerical solvers and computing resources. The optimal transportation meshfree (OTM) method is a meshfree updated-Lagrangian methodology for fluid and solid dynamic flows, possibly involving multiple phases, viscosity and general equations of state, general inelastic and history-dependent constitutive relations, arbitrary variable domains and boundary conditions and the interaction between fluid flows and highly deformable structures. The rationale behind the approach is combining concepts from the optimal transportation (OT) theory with material-point sampling, local maximum entropy (LME) approximation, the seizing contact, variational material point failure algorithm, and overcomes the essential difficulties in grid-based numerical methods like Lagrangian and Eulerian finite element method. Owing to those advantages, the OTM method provides an efficient and accurate solution for HVI simulation. In this paper, large scale three-dimensional numerical simulations on the HVI of the copper projectiles with different thicknesses (3.45, 5.13 mm), different masses (3, 10 g), different impact angles (5.4°, 11.7°) and different impact velocities (5.55, 5.12 km/s) impacting the Al6061-T6 plate with different thicknesses (2.87, 4.39 mm) were performed within the software ESCAAS based on the OTM method using a dynamic load balancing MPI/Pthreads parallel implementation. The dynamic response of material including phase transition in the high strain rate, high pressure and high temperature regime expected in this paper was described by the use of a variational thermomechanical coupling constitutive model with the SESAME equation of state, Grüneisen equation of state, rate-dependent J2 plasticity with power law hardening and thermal softening. The simulation results are in good agreement with the experimental measurements, which indicates the capacity of the OTM method and the ESCAAS software for HVI simulation.
  • loading
  • [1]
    刘岩, 张雄, 刘平, 等. 空间碎片防护问题的物质点无网格法与软件系统 [J]. 载人航天, 2015, 21(5): 503–509. DOI: 10.16329/j.cnki.zrht.2015.05.013.

    LIU Y, ZHANG X, LIU P, et al. Meshfree material point method and software system for problems of shielding space debris [J]. Manned Spaceflight, 2015, 21(5): 503–509. DOI: 10.16329/j.cnki.zrht.2015.05.013.
    [2]
    DONEA J, GIULIANI S, HALLEUX J P. An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions [J]. Computer Methods in Applied Mechanics and Engineering, 1982, 33(1): 689–723. DOI: 10.1016/0045-7825(82)90128-1.
    [3]
    DONEA J, HUERTA A, PONTHOT J P, et al. Arbitrary Lagrangian-Eulerian methods [M]//STEIN E, DE BORST R, HUGHES T J R. Encyclopedia of Computational Mechanics. John Wiley, 2004: 413–437. DOI: 10.1002/0470091355.ecm009.
    [4]
    QUAN X, BIRNBAUM N K, COWLER M S, et al. Numerical simulation of structural deformation under shock and impact loads using a coupled multi-solver approach [C]// 5th Asia-Pacific Conference on Shock and Impact Loads on Structures. Hunan, 2003.
    [5]
    GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics: theory and application to non-spherical stars [J]. Monthly Notices of the Royal Astronomical Society, 1997, 181(3): 375–389. DOI: 10.1093/mnras/181.3.375.
    [6]
    LIU W K, JUN S, ZHANG Y F. Reproducing kernel particle methods [J]. International Journal for Numerical Methods in Fluids, 1995, 20(8/9): 1081–1106. DOI: 10.1002/fld.1650200824.
    [7]
    ZHANG X, CHEN Z, LIU Y. The material point method [M]//ZHANG X, CHEN Z, LIU Y. The Material Point Method: A Continuum-Based Particle Method for Extreme Loading Cases. Oxford: Academic Press, 2017: 37-101. DOI: 10.1016/B978-0-12-407716-4.00003-X.
    [8]
    闫晓军, 张玉珠, 聂景旭. 空间碎片超高速碰撞数值模拟的SPH方法 [J]. 北京航空航天大学学报, 2005, 31(3): 351–354. DOI: 10.3969/j.issn.1001-5965.2005.03.019.

    YAN X J, ZHANG Y Z, NIE J X. Numerical simulation of space debris hypervelocity impact using SPH method [J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(3): 351–354. DOI: 10.3969/j.issn.1001-5965.2005.03.019.
    [9]
    刘有英, 王海福. 高速碰撞下航天器防护结构效能评价 [J]. 弹箭与制导学报, 2005, 25(4): 359–361. DOI: 10.3969/j.issn.1673-9728.2005.04.117.

    LIU Y Y, WANG H F. Evaluations of high-velocity impact for spacecraft shields [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2005, 25(4): 359–361. DOI: 10.3969/j.issn.1673-9728.2005.04.117.
    [10]
    强洪夫, 范树佳, 陈福振, 等. 基于拟流体模型的SPH新方法及其在弹丸超高速碰撞薄板中的应用 [J]. 爆炸与冲击, 2017, 37(6): 990–1000. DOI: 10.11883/1001-1455(2017)06-0990-11.

    QIANG H F, FAN S J, CHEN F Z, et al. A new smoothed particle hydrodynamics method based on the pseudo-fluid model and its application in hypervelocity impact of a projectile on a thin plate [J]. Explosion and Shock Waves, 2017, 37(6): 990–1000. DOI: 10.11883/1001-1455(2017)06-0990-11.
    [11]
    林健宇, 罗斌强, 徐名扬, 等. 铝弹丸超高速撞击防护结构的研究进展 [J]. 高压物理学报, 2019, 33(3): 030112. DOI: 10.11858/gywlxb.20190774.

    LIN J Y, LUO B Q, XU M Y, et al. Progress of aluminum projectile impacting on plate with hypervelocity [J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030112. DOI: 10.11858/gywlxb.20190774.
    [12]
    LI B, HABBAL F, ORTIZ M, et al. Optimal transportation meshfree approximation schemes for fluid and plastic flows [J]. International Journal for Numerical Methods in Engineering, 2010, 83(12): 1541–1579. DOI: 10.1002/nme.2869.
    [13]
    ARROYO M, ORTIZ M. Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods [J]. International Journal for Numerical Methods in Engineering, 2006, 65(13): 2167–2202. DOI: 10.1002/nme.1534.
    [14]
    SANTAMBROGIO F. Introduction to optimal transport theory [EB/OL]. arXiv: 1009.3856. (2010-09-20)[2021-07-01]. https://doi.org/10.48550/arXiv.1009.3856.
    [15]
    LI B, STALZER M, ORTIZ M. A massively parallel implementation of the optimal transportation meshfree method for explicit solid dynamics [J]. International Journal for Numerical Methods in Engineering, 2014, 100(1): 40–61. DOI: 10.1002/nme.4710.
    [16]
    SCHMIDT B, FRATERNALI F, ORTIZ M. Eigenfracture: an eigendeformation approach to variational fracture [J]. Multiscale Modeling & Simulation, 2009, 7(3): 1237–1266. DOI: 10.1137/080712568.
    [17]
    LI B, PANDOLFI A, ORTIZ M. Material-point erosion simulation of dynamic fragmentation of metals [J]. Mechanics of Materials, 2015, 80: 288–297. DOI: 10.1016/j.mechmat.2014.03.008.
    [18]
    PANDOLFI A, LI B, ORTIZ M. Modeling fracture by material-point erosion [J]. International Journal of Fracture, 2013, 184(1/2): 3–16. DOI: 10.1007/s10704-012-9788-x.
    [19]
    樊江, 袁圆, 廖祜明, 等. 基于最优运输无网格法的Whipple屏超高速撞击数值模拟 [J]. 爆炸与冲击, 2019, 40(7): 074201. DOI: 10.11883/bzycj-2019-0241.

    FAN J, YUAN Y, LIAO H M, et al. Numerical simulation of Whipple shield hypervelocity impact based on optimal transportation meshfree method [J]. Explosion and Shock Waves, 2019, 40(7): 074201. DOI: 10.11883/bzycj-2019-0241.
    [20]
    STAINIER L. A variational approach to modeling coupled thermo-mechanical nonlinear dissipative behaviors [J]. Advances in Applied Mechanics, 2013, 46: 69–126. DOI: 10.1016/B978-0-12-396522-6.00002-5.
    [21]
    廖祜明. 整体拉格日无网格流固耦合计算方法 [D]. 北京: 北京航空航天大学, 2018: 33–34.
    [22]
    FAN J, LIAO H M, WANG H, et al. Local maximum-entropy based surrogate model and its application to structural reliability analysis [J]. Structural and Multidisciplinary Optimization, 2018, 57(1): 373–392. DOI: 10.1007/s00158-017-1760-y.
    [23]
    FAN Z Y, WANG H, HUANG Z D, et al. A Lagrangian meshfree mesoscale simulation of powder bed fusion additive manufacturing of metals [J]. International Journal for Numerical Methods in Engineering, 2021, 122(2): 483–514. DOI: 10.1002/nme.6546.
    [24]
    NAVAS P, YU R C, LI B, et al. Modeling the dynamic fracture in concrete: an eigensoftening meshfree approach [J]. International Journal of Impact Engineering, 2018, 113: 9–20. DOI: 10.1016/j.ijimpeng.2017.11.004.
    [25]
    PIEKUTOWSKI A J. A simple dynamic model for the formation of debris clouds [J]. International Journal of Impact Engineering, 1990, 10(1): 453–471. DOI: 10.1016/0734-743X(90)90079-B.
    [26]
    STEINBERG D J. Equation of state and strength properties of selected materials [M]. Livermore: Lawrence Livermore National Laboratory, 1996.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (496) PDF downloads(105) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return