Citation: | ZHU Xinguang, FENG Chun, WANG Xinquan, CHENG Pengda, GAO Shengyuan. A one-dimensional axisymmetric explosive model and its application in bench blasting simulation[J]. Explosion And Shock Waves, 2022, 42(11): 115202. doi: 10.11883/bzycj-2021-0276 |
[1] |
PERSON P A, HOLMBERG R, LEE J. Rock blasting and explosives engineering [C]// International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1995, 6(32): 278A. DOI: 10.1016/0148-9062(95)99213-H.
|
[2] |
CROUCH S L, STARFIELD A M, RIZZO F J. Boundary element methods in solid mechanics [J]. Journal of Applied Mechanics, 1983, 50(3): 704–705. DOI: 10.1115/1.3167130.
|
[3] |
NAGEL N B, SANCHEZ-NAGEL M. Stress shadowing and microseismic events: a numerical evaluation [C]// SPE Annual Technical Conference and Exhibition. Denver: One Petro, 2011: 4223–4243. DOI: 10.2118/147363-MS.
|
[4] |
张凤鹏, 金校元, 冯夏庭. 台阶高度对露天矿爆破效果影响的三维有限元分析 [J]. 岩石力学与工程学报, 2002, 21(12): 1835–1838. DOI: 10.3321/j.issn:1000-6915.2002.12.018.
ZHANG F P, JIN X Y, FENG X T. 3D fem analysis of the influence of bench height on open-pit mines bench blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(12): 1835–1838. DOI: 10.3321/j.issn:1000-6915.2002.12.018.
|
[5] |
农深富. 露天矿深孔爆破振动作用下边坡的稳定性分析 [D]. 南宁: 广西大学, 2016. DOI: 10.7666/d.Y3086543.
NONG S F. Slope stability analysis of deep-hole blasting open-pit mine vibration effect [D]. Nanning: Guangxi University, 2016. DOI: 10.7666/d.Y3086543.
|
[6] |
CUNDALL P A. A computer model for simulating progressive large-scale movements in blocky rock systems [C]//Proceedings of Symposium of the International Society for Rock Mechanics. Nancy: ISRM, 1971: II-8.
|
[7] |
SHI G H. Discontinuous deformation analysis: a new numerical model for the statics and dynamics of deformable block structures [J]. Engineering Computations, 1992, 9(2): 157–168. DOI: 10.1108/eb023855.
|
[8] |
DAMJANAC B, CUNDALL P. Application of distinct element methods to simulation of hydraulic fracturing in naturally fractured reservoirs [J]. Computers and Geotechnics, 2016, 71: 283–294. DOI: 10.1016/j.compgeo.2015.06.007.
|
[9] |
张雄, 廉艳平, 杨鹏飞, 等. 冲击爆炸问题的三维物质点法数值仿真 [C]// 2011计算机辅助工程及其理论研讨会论文集. 上海: 中国力学学会, 2011: 29–37.
|
[10] |
曾治鑫, 阚镭, 张雄. 层裂问题的交错网格物质点法研究 [J]. 固体力学学报, 2021, 42(3): 320–333. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2021.010.
ZENG Z X, KAN L, ZHANG X. The staggered grid material point method (SGMP) simulation of spallation [J]. Chinese Journal of Solid Mechanics, 2021, 42(3): 320–333. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2021.010.
|
[11] |
LUCY L B. A numerical approach to the testing of the fission hypothesis [J]. The Astronomical Journal, 1977, 82: 1013–1024. DOI: 10.1086/112164.
|
[12] |
赵健, 张贵才, 徐依吉, 等. 基于SPH方法粒子射流破岩数值模拟与实验研究 [J]. 爆炸与冲击, 2017, 37(3): 479–486. DOI: 10.11883/1001-1455(2017)03-0479-08.
ZHAO J, ZHANG G C, XU Y J, et al. SPH-based numerical simulation and experimental study on rock breaking by particle impact [J]. Explosion and Shock Waves, 2017, 37(3): 479–486. DOI: 10.11883/1001-1455(2017)03-0479-08.
|
[13] |
LIU M B, LIU G R. Smoothed particle hydrodynamics (SPH): an overview and recent developments [J]. Archives of Computational Methods in Engineering, 2010, 17(1): 25–76. DOI: 10.1007/s11831-010-9040-7.
|
[14] |
宗智, 邹丽, 刘谋斌, 等. 模拟二维水下爆炸问题的光滑粒子(SPH)方法 [J]. 水动力学研究与进展, 2007, 22(1): 61–67. DOI: 10.3969/j.issn.1000-4874.2007.01.009.
ZONG Z, ZOU L, LIU M B, et al. SPH simulation of two-dimensional underwater explosion [J]. Journal of Hydrodynamics, 2007, 22(1): 61–67. DOI: 10.3969/j.issn.1000-4874.2007.01.009.
|
[15] |
余仁兵, 陈震, 曾勇, 等. 铜绿山矿井下深孔爆破孔网参数数值模拟研究 [J]. 采矿技术, 2014, 14(2): 82–85. DOI: 10.13828/j.cnki.ckjs.2014.02.030.
|
[16] |
丁希平. 深孔台阶爆破应力场及若干设计参数的数值分析研究 [D]. 北京: 铁道部科学研究院, 2001.
DING X P. Digital analysis of stress distribution and some parameters of deep hole bench blasting [D]. Beijing: China Academy of Railway Sciences, 2001.
|
[17] |
璩世杰, 刘际飞. 节理角度对预裂爆破成缝效果的影响研究 [J]. 岩土力学, 2015, 36(1): 189–194, 204. DOI: 10.16285/j.rsm.2015.01.026.
QU S J, LIU J F. Numerical analysis of joint angle effect on cracking with presplit blasting [J]. Rock and Soil Mechanics, 2015, 36(1): 189–194, 204. DOI: 10.16285/j.rsm.2015.01.026.
|
[18] |
刘超. 炮孔空气间隔装药爆破技术研究 [D]. 长沙: 长沙矿山研究院, 2017.
LIU C. Research on air gap charging blasting technology [D]. Changsha: Changsha Institute of Mining Research, 2017.
|
[19] |
谢冰, 李海波, 王长柏, 等. 节理几何特征对预裂爆破效果影响的数值模拟 [J]. 岩土力学, 2011, 32(12): 3812–3820. DOI: 10.3969/j.issn.1000-7598.2011.12.044.
XIE B, LI H B, WANG C B, et al. Numerical simulation of presplit blasting influenced by geometrical characteristics of joints [J]. Rock and Soil Mechanics, 2011, 32(12): 3812–3820. DOI: 10.3969/j.issn.1000-7598.2011.12.044.
|
[20] |
YAN P, ZHOU W X, LU W B, et al. Simulation of bench blasting considering fragmentation size distribution [J]. International Journal of Impact Engineering, 2016, 90: 132–145. DOI: 10.1016/j.ijimpeng.2015.11.015.
|
[21] |
郭双, 武鑫, 甯尤军. 地应力条件下爆破载荷破岩的DDA模拟研究 [J]. 工程爆破, 2018, 24(5): 8–14. DOI: 10.3969/j.issn.1006-7051.2018.05.002.
GUO S, WU X, NING Y J. DDA simulations of rock fracture by blasting loads under geostress conditions [J]. Engineering Blasting, 2018, 24(5): 8–14. DOI: 10.3969/j.issn.1006-7051.2018.05.002.
|
[22] |
江成, 甯尤军, 武鑫. 地应力条件下的凿岩爆破数值模拟 [J]. 工程爆破, 2017, 23(1): 16–20. DOI: 10.3969/j.issn.1006-7051.2017.01.004.
JIANG C, NING Y J, WU X. Numerical simulation of drilling blasting under earth stress [J]. Engineering Blasting, 2017, 23(1): 16–20. DOI: 10.3969/j.issn.1006-7051.2017.01.004.
|
[23] |
HAN H Y, FUKUDA D, LIU H Y, et al. FDEM simulation of rock damage evolution induced by contour blasting in the bench of tunnel at deep depth [J]. Tunnelling and Underground Space Technology, 2020, 103: 103495. DOI: 10.1016/j.tust.2020.103495.
|
[24] |
郑炳旭, 冯春, 宋锦泉, 等. 炸药单耗对赤铁矿爆破块度的影响规律数值模拟研究 [J]. 爆破, 2015, 32(3): 62–69. DOI: 10.3963/j.issn.1001-487X.2015.03.011.
ZHENG B X, FENG C, SONG J Q, et al. Numerical study on relationship between specific charge and fragmentation distribution of hematite [J]. Blasting, 2015, 32(3): 62–69. DOI: 10.3963/j.issn.1001-487X.2015.03.011.
|
[25] |
冯春, 李世海, 郑炳旭, 等. 基于连续-非连续单元方法的露天矿三维台阶爆破全过程数值模拟 [J]. 爆炸与冲击, 2019, 39(2): 024201. DOI: 10.11883/bzycj-2017-0393.
FENG C, LI S H, ZHENG B X, et al. Numerical simulation on complete process of three-dimensional bench blasting in an open-pit mine based on CDEM [J]. Explosion and Shock Waves, 2019, 39(2): 024201. DOI: 10.11883/bzycj-2017-0393.
|
[26] |
FENG C, LI S H, LIU X Y, et al. A semi-spring and semi-edge combined contact model in CDEM and its application to analysis of Jiweishan landslide [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(1): 26–35. DOI: 10.1016/j.jrmge.2013.12.001.
|
[27] |
LI S H, ZHAO M H, WANG Y N, et al. A new numerical method for DEM-block and particle model [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(3): 436. DOI: 10.1016/j.ijrmms.2003.12.076.
|
[28] |
ONEDERRA I A, FURTNEY J K, SELLERS E, et al. Modelling blast induced damage from a fully coupled explosive charge [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 58: 73–84. DOI: 10.1016/j.ijrmms.2012.10.004.
|