Volume 42 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
ZHENG Zhihao, REN Huiqi, LONG Zhilin, GUO Ruiqi, CAI Yang, LI Zhijian. A study on impact compression mechanical properties of PP/CF reinforced coral sand cement-based composites[J]. Explosion And Shock Waves, 2022, 42(7): 073104. doi: 10.11883/bzycj-2021-0297
Citation: ZHENG Zhihao, REN Huiqi, LONG Zhilin, GUO Ruiqi, CAI Yang, LI Zhijian. A study on impact compression mechanical properties of PP/CF reinforced coral sand cement-based composites[J]. Explosion And Shock Waves, 2022, 42(7): 073104. doi: 10.11883/bzycj-2021-0297

A study on impact compression mechanical properties of PP/CF reinforced coral sand cement-based composites

doi: 10.11883/bzycj-2021-0297
  • Received Date: 2021-07-09
  • Rev Recd Date: 2021-11-19
  • Available Online: 2022-06-10
  • Publish Date: 2022-07-25
  • Four kinds of carbon-polypropylene hybrid fiber reinforced coral sand cement-based composites with different fiber content were obtained by mixing carbon fiber and polypropylene fiber into coral sand cement-based composites prepared by artificial seawater. Impact compression tests of this material under five strain rates were carried out with a 100-mm diameter split Hopkinson pressure bar. The parameters of Holmquist-Johnson-Cook model are determined by experimental data and parameter debugging. Based on Holmquist-Johnson-Cook model, LS-DYNA is used to simulate the impact compression of this material. By analyzing the failure mode, stress-strain curve and energy dissipation of the test blocks, the impact compression mechanical properties of carbon-polypropylene hybrid fiber reinforced coral sand cement-based composites are studied. The results are as follows. (1) The critical value of test strain rate is 200 s−1; when the test strain rate is greater than 200 s−1, the fiber network formed by hybrid carbon fiber and polypropylene fiber strengthens the toughening effect of the test block. (2) The peak stress of carbon-polypropylene hybrid fiber reinforced coral sand cement-based composites exhibits obvious strain rate effect, and the dynamic increase factor is highly sensitive to the strain rate. (3) The use of fine aggregate of coral sand results in more defects such as micro-cracks and micro-voids in the test block; after mixing carbon fiber and polypropylene fiber into the coral sand cement-based composites, the improvement of the impact compressive strength of the test block is limited, but the impact toughness of the coral sand cement-based composites is significantly enhanced. (4) LS-DYNA is used to numerically simulate the impact compression test process of hybrid carbon fiber (15.75 kg/m3) and polypropylene fiber (1.82 kg/m3), while the error between the simulation results of peak stress and the test results is within 5.97 %. The study is of great significance for the preparation of high performance coral sand cement-based composites and the emergency repair of offshore islands and reefs.
  • loading
  • [1]
    岳承军, 余红发, 麻海燕, 等. 全珊瑚海水混凝土动态冲击性能试验研究 [J]. 材料导报, 2019, 33(16): 2697–2703. DOI: 10.11896/cldb.18070094.

    YUE C J, YU H F, MA H Y, et al. Experiment study on dynamic impact properties of coral aggregate seawater concrete [J]. Materials Reports, 2019, 33(16): 2697–2703. DOI: 10.11896/cldb.18070094.
    [2]
    达波, 余红发, 麻海燕, 等. 南海岛礁普通混凝土结构耐久性的调查研究 [J]. 哈尔滨工程大学学报, 2016, 37(8): 1034–1040. DOI: 10.11990/jheu.201505051.

    DA B, YU H F, MA H Y, et al. Investigation of durability of ordinary concrete structures in the South China Sea [J]. Journal of Harbin Engineering University, 2016, 37(8): 1034–1040. DOI: 10.11990/jheu.201505051.
    [3]
    达波, 余红发, 麻海燕, 等. 南海海域珊瑚混凝土结构的耐久性影响因素 [J]. 硅酸盐学报, 2016, 44(2): 253–260. DOI: 10.14062/j.issn.0454-5648.2016.02.11.

    DA B, YU H F, MA H Y, et al. Factors influencing durability of coral concrete structure in the South China Sea [J]. Journal of the Chinese Ceramic Society, 2016, 44(2): 253–260. DOI: 10.14062/j.issn.0454-5648.2016.02.11.
    [4]
    旷杜敏, 龙志林, 周益春, 等. 珊瑚礁岩土材料的物理力学性能研究综述 [J]. 湘潭大学自然科学学报, 2018, 40(5): 108–126. DOI: 10.13715/j.cnki.nsjxu.2018.05.017.

    KUANG D M, LONG Z L, ZHOU Y C, et al. A review of the physical and mechanical properties of coral reef [J]. Natural Science Journal of Xiangtan University, 2018, 40(5): 108–126. DOI: 10.13715/j.cnki.nsjxu.2018.05.017.
    [5]
    谭国金, 朱德祺, 梁春雨, 等. 桥梁用聚丙烯纤维增强水泥基复合材料的力学性能 [J]. 吉林大学学报(工学版), 2020, 50(4): 1396–1402. DOI: 10.13229/j.cnki.jdxbgxb20190914.

    TAN G J, ZHU D Q, LIANG C Y, et al. Mechanical properties of polypropylene fiber reinforced engineering cementitious composites for bridges [J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(4): 1396–1402. DOI: 10.13229/j.cnki.jdxbgxb20190914.
    [6]
    SINGH S, SHUKLA A, BROWN R. Pullout behavior of polypropylene fibers from cementitious matrix [J]. Cement and Concrete Research, 2004, 34(10): 1919–1925. DOI: 10.1016/j.cemconres.2004.02.014.
    [7]
    LI V C, WANG S X, WU C. Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composite (PVA-ECC) [J]. ACI Materials Journal, 2001, 98(6): 483–492.
    [8]
    严少华, 李志成, 王明洋, 等. 高强钢纤维混凝土冲击压缩特性试验研究 [J]. 爆炸与冲击, 2002, 22(3): 237–241.

    YAN S H, LI Z C, WANG M Y, et al. Dynamic compressive behaivour of high-strength steel fiber reiforced concrete [J]. Explosion and Shock Waves, 2002, 22(3): 237–241.
    [9]
    谢金, 杨伟军. 碳纤维增强水泥基复合材料的制备及热电性能研究 [J]. 功能材料, 2020, 51(4): 4148–4152,4159. DOI: 10.3969/j.issn.1001-9731.2020.04.025.

    XIE J, YANG W J. Preparation and thermoelectric properties of carbon fiber reinforced cement-based composite [J]. Journal of Functional Materials, 2020, 51(4): 4148–4152,4159. DOI: 10.3969/j.issn.1001-9731.2020.04.025.
    [10]
    LIU G J, BAI E L, XU J Y, et al. Dynamic compressive mechanical properties of carbon fiber-reinforced polymer concrete with different polymer-cement ratios at high strain rates [J]. Construction and Building Materials, 2020, 261: 119995. DOI: 10.1016/j.conbuildmat.2020.119995.
    [11]
    张娜, 周健, 徐名凤, 等. 玄武岩纤维高延性水泥基复合材料的动态力学性能 [J]. 爆炸与冲击, 2020, 40(5): 053101. DOI: 10.11883/bzycj-2019-0351.

    ZHANG N, ZHOU J, XU M F, et al. Dynamic mechanical properties of basalt fiber engineered cementitious composites [J]. Explosion and Shock Waves, 2020, 40(5): 053101. DOI: 10.11883/bzycj-2019-0351.
    [12]
    PAKRAVAN H R, JAMSHIDI M, LATIFI M. Study on fiber hybridization effect of engineered cementitious composites with low- and high-modulus polymeric fibers [J]. Construction and Building Materials, 2016, 112: 739–746. DOI: 10.1016/j.conbuildmat.2016.02.112.
    [13]
    郭瑞奇, 任辉启, 张磊, 等. 分离式大直径Hopkinson杆实验技术研究进展 [J]. 兵工学报, 2019, 40(7): 1518–1536. DOI: 10.3969/j.issn.1000-1093.2019.07.023.

    GUO R Q, REN H Q, ZHANG L, et al. Research progress of large-diameter split Hopkinson bar experimental technique [J]. Acta Armamentarii, 2019, 40(7): 1518–1536. DOI: 10.3969/j.issn.1000-1093.2019.07.023.
    [14]
    周广宇, 胡时胜. 高g值加速度发生器中的波形整形技术 [J]. 爆炸与冲击, 2013, 33(5): 479–486. DOI: 10.11883/1001-1455(2013)05-0479-08.

    ZHOU G Y, HU S S. Pulse-shaping techniques of high-g-value acceleration generators [J]. Explosion and Shock Waves, 2013, 33(5): 479–486. DOI: 10.11883/1001-1455(2013)05-0479-08.
    [15]
    果春焕, 周培俊, 陆子川, 等. 波形整形技术在Hopkinson杆实验中的应用 [J]. 爆炸与冲击, 2015, 35(6): 881–887. DOI: 10.11883/1001-1455(2015)06-0881-07.

    GUO C H, ZHOU P J, LU Z C, et al. Application of pulse shaping technique in Hopkinson bar experiments [J]. Explosion and Shock Waves, 2015, 35(6): 881–887. DOI: 10.11883/1001-1455(2015)06-0881-07.
    [16]
    SONG B, CHEN W. Dynamic stress equilibration in split Hopkinson pressure bar tests on soft materials [J]. Experimental Mechanics, 2004, 44(3): 300–312. DOI: 10.1007/BF02427897.
    [17]
    MA H, YUE C, YU H, et al. Experimental study and numerical simulation of impact compression mechanical properties of high strength coral aggregate seawater concrete [J]. International Journal of Impact Engineering, 2020, 137: 103466. DOI: 10.1016/j.ijimpeng.2019.103466.
    [18]
    张聪, 余志辉, 韩世诚, 等. 混杂纤维增强应变硬化水泥基复合材料的压缩本构关系 [J]. 复合材料学报, 2020, 37(5): 1221–1226. DOI: 10.13801/j.cnki.fhclxb.20190823.002.

    ZHANG C, YU Z H, HAN S C, et al. Compression constitutive relation of hybrid fiber reinforced strain hardening cementitous composites [J]. Acta Materiae Compositae Sinica, 2020, 37(5): 1221–1226. DOI: 10.13801/j.cnki.fhclxb.20190823.002.
    [19]
    徐世烺, 陈超, 李庆华, 等. 超高韧性水泥基复合材料动态压缩力学性能的数值模拟研究 [J]. 工程力学, 2019, 36(9): 50–59. DOI: 10.6052/j.issn.1000-4750.2018.03.0147.

    XU S L, CHEN C, LI Q H, et al. Numerical simulation on dynamic compressive behavior of ultra-high toughness cementitious-composites [J]. Engineering Mechanics, 2019, 36(9): 50–59. DOI: 10.6052/j.issn.1000-4750.2018.03.0147.
    [20]
    王道荣, 胡时胜. 骨料对混凝土材料冲击压缩行为的影响 [J]. 实验力学, 2002, 17(1): 23–27. DOI: 10.3969/j.issn.1001-4888.2002.01.004.

    WANG D R, HU S S. Influence of aggregate on the compression properties of concrete under impact [J]. Journal of Experimental Mechanics, 2002, 17(1): 23–27. DOI: 10.3969/j.issn.1001-4888.2002.01.004.
    [21]
    董凯, 任辉启, 阮文俊, 等. 珊瑚砂应变率效应研究 [J]. 爆炸与冲击, 2020, 40(9): 093102. DOI: 10.11883/bzycj-2019-0432.

    DONG K, REN H Q, RUAN W J, et al. Study on strain rate effect of coral sand [J]. Explosion and Shock Waves, 2020, 40(9): 093102. DOI: 10.11883/bzycj-2019-0432.
    [22]
    LUNDBERG B. A split Hopkinson bar study of energy absorption in dynamic rock fragmentation [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1976, 13(6): 187–197. DOI: 10.1016/0148-9062(76)91285-7.
    [23]
    任根茂, 吴昊, 方秦, 等. 普通混凝土HJC本构模型参数确定 [J]. 振动与冲击, 2016, 35(18): 9–16. DOI: 10.13465/j.cnki.jvs.2016.14.002.

    REN G M, WU H, FANG Q, et al. Determinations of HJC constitutive model parameters for normal strength concrete [J]. Journal of Vibration and Shock, 2016, 35(18): 9–16. DOI: 10.13465/j.cnki.jvs.2016.14.002.
    [24]
    郭瑞奇, 任辉启, 龙志林, 等. 大直径SHTB实验装置数值模拟及混凝土细观骨料模型动态直拉研究 [J]. 爆炸与冲击, 2020, 40(9): 093101. DOI: 10.11883/bzycj-2020-0015.

    GUO R Q, REN H Q, LONG Z L, et al. Numerical simulation on a large diameter SHTB apparatus and dynamic tensile responses of concrete based on mesoscopic models [J]. Explosion and Shock Waves, 2020, 40(9): 093101. DOI: 10.11883/bzycj-2020-0015.
    [25]
    郭瑞奇, 任辉启, 张磊, 等. 基于混凝土细观骨料模型的SHPB仿真模拟研究 [J]. 振动与冲击, 2019, 38(22): 107–116. DOI: 10.13465/j.cnki.jvs.2019.22.015.

    GUO R Q, REN H Q, ZHANG L, et al. Simulation for SHPB tests based on a mesoscopic concrete aggregate model [J]. Journal of Vibration and Shock, 2019, 38(22): 107–116. DOI: 10.13465/j.cnki.jvs.2019.22.015.
    [26]
    刘海峰, 韩莉. 冲击荷载作用下混凝土动态力学性能数值模拟研究 [J]. 固体力学学报, 2015, 36(2): 145–153. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2015.02.007.

    LIU H F, HAN L. Numerical simulation research on dynamic mechanical behaviors of concrete subjected to impact loading [J]. Chinese Journal of Solid Mechanics, 2015, 36(2): 145–153. DOI: 10.19636/j.cnki.cjsm42-1250/o3.2015.02.007.
    [27]
    张凤国, 李恩征. 混凝土撞击损伤模型参数的确定方法 [J]. 弹道学报, 2001, 13(4): 12–16, 23. DOI: 10.3969/j.issn.1004-499X.2001.04.003.

    ZHANG F G, LI E Z. A method to determine the parameters of the model for concrete impact and damage [J]. Journal of Ballistics, 2001, 13(4): 12–16, 23. DOI: 10.3969/j.issn.1004-499X.2001.04.003.
    [28]
    吴赛, 赵均海, 王娟, 等. 基于砼SHPB试验数值分析的HJC模型参数研究 [J]. 计算力学学报, 2015, 32(6): 789–795. DOI: 10.7511/jslx201506012.

    WU S, ZHAO J H, WANG J, et al. Study on parameters of HJC constitutive model based on numerical simulation of concrete SHPB test [J]. Chinese Journal of Computational Mechanics, 2015, 32(6): 789–795. DOI: 10.7511/jslx201506012.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(5)

    Article Metrics

    Article views (393) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return