Volume 42 Issue 5
May  2022
Turn off MathJax
Article Contents
SHU Junxiang, PEI Hongbo, HUANG Wenbin, ZHANG Xu, ZHENG Xianxu. Accurate measurements of detonation pressure and detonation reaction zones of several commonly-used explosives[J]. Explosion And Shock Waves, 2022, 42(5): 052301. doi: 10.11883/bzycj-2021-0305
Citation: SHU Junxiang, PEI Hongbo, HUANG Wenbin, ZHANG Xu, ZHENG Xianxu. Accurate measurements of detonation pressure and detonation reaction zones of several commonly-used explosives[J]. Explosion And Shock Waves, 2022, 42(5): 052301. doi: 10.11883/bzycj-2021-0305

Accurate measurements of detonation pressure and detonation reaction zones of several commonly-used explosives

doi: 10.11883/bzycj-2021-0305
  • Received Date: 2021-07-16
  • Rev Recd Date: 2021-11-02
  • Available Online: 2022-03-30
  • Publish Date: 2022-05-27
  • The detonation pressure and detonation reaction zone are important for the detonation performance evaluation of explosives. In order to obtain the reaction zone parameters of several common high explosives, the detonation wave profiles in TNT, PETN, RDX, HMX, TATB and CL-20 based explosives were experimentally measured with photon Doppler velocimetry (PDV). The explosive samples were initiated by explosive plane-wave lenses or a powder gun, and the thickness of the samples was more than 10 mm to insure a stable detonation in the test area. A transparent LiF window covered by a 0.7-μm-thick aluminum reflective coating on the distal side was attached to the explosive sample, and the particle velocity histories of the interface between the explosive and window were measured with PDV. The Chapman-Jouguet (CJ) point was determined by the inflexion point in the corresponding profile or the separation point of the particle velocity histories for samples of different lengths. The CJ pressure was calculated using the impedance matching method. The pressure at the von Neumann (VN) spike was also obtained. The results show that for ideal explosives such as PETN, RDX, HMX and CL-20, the interface particle velocity profiles show a distinct end of the reaction zone, and the detonation reaction zones are narrow. The detonation reaction time is between 7 ns and 15 ns for those ideal explosives. For TNT and TATB based explosives, measurements show an indistinct end of the reaction zone because the reaction of solid carbon formation is slow, and the detonation reaction time is about (100±15) ns and (255±20) ns, respectively. The ratio of the measured spike pressure to CJ pressure of the explosives ranges from 1.22 to 1.46. The analysis indicates that the relative expanded uncertainty of the detonation pressure measured with PDV is 4.4% at k=2, and the uncertainty of the detonation reaction time is 2-4 ns for those ideal explosives or 10-20 ns for those unideal explosives.
  • loading
  • [1]
    MENIKOFF R. Detonation waves in PBX 9501 [J]. Combustion Theory and Modelling, 2006, 10(6): 1003–1021. DOI: 10.1080/13647830600851754.
    [2]
    MENIKOFF R, SHAW M S. The SURF model and the curvature effect for PBX 9502 [J]. Combustion Theory and Modelling, 2012, 16(6): 1140–1169. DOI: 10.1080/13647830.2012.713994.
    [3]
    HOBBS M L, SCHMITT R G, MOFFAT H K. JCZS3: an improved database for EOS calculations [C]//Proceedings of the 16th International Detonation Symposium. Cambridge, MD, 2018.
    [4]
    TARVER C M. Jones-Wilkins-Lee unreacted and reaction product equations of state for overdriven detonations in octogen- and triaminotrinitrobenzene-based plastic-bonded explosives [J]. The Journal of Physical Chemistry A, 2020, 124(7): 1399–1408. DOI: 10.1021/acs.jpca.9b10804.
    [5]
    赵艳红, 段素青, 刘海风, 等. RDX炸药爆轰产物物态方程 [J]. 高压物理学报, 2015, 29(1): 47–51. DOI: 10.11858/gywlxb.2015.01.008.

    ZHAO Y H, DUAN S Q, LIU H F, et al. Equation of state of detonation products for RDX explosive [J]. Chinese Journal of High Pressure Physics, 2015, 29(1): 47–51. DOI: 10.11858/gywlxb.2015.01.008.
    [6]
    薛彭寿, 王淑萍. 大药量水箱法测定炸药爆轰压力的研究 [J]. 火炸药, 1992(2): 10–19.

    XUE P S, WANG S P. A study on aquarium test for the detonation pressure with large quantity of explosive [J]. Chinese Journal of Explosives and Propellants, 1992(2): 10–19.
    [7]
    徐康, 于德洋, 许云祥, 等. 水箱法: 一种可用于小药量测定炸药爆轰压力的方法 [J]. 爆炸与冲击, 1981, 1(2): 89–95.

    XU K, YU D Y, XU Y X, et al. Aquarium test-a method for determination of the detonation pressure with small quantity of explosive [J]. Explosion and Shock Waves, 1981, 1(2): 89–95.
    [8]
    吴国栋. 炸药爆轰参数的测量 [J]. 爆炸与冲击, 1987, 7(4): 367–374.

    WU G D. Measurements of detonation parameters for explosives [J]. Explosion and Shock Waves, 1987, 7(4): 367–374.
    [9]
    熊昌彦. 电磁法和压阻法同时测量爆压的探索 [J]. 爆炸与冲击, 1984, 4(3): 79–81.

    XIONG C Y. Measurement of detonation pressure using electromagnetic gauges and piezoresistors [J]. Explosion and Shock Waves, 1984, 4(3): 79–81.
    [10]
    刘德海. 炸药爆压的测量方法及存在问题 [J]. 火炸药, 1980(4): 36–46.
    [11]
    伊芳, 王桂兵. 利用传感器测量爆压的研究 [J]. 火炸药学报, 1997, 20(1): 59–61. DOI: 10.14077/j.issn.1007-7812.1997.01.019.

    YI F, WANG G B. A study on using transducer to measure the detonation pressure [J]. Chinese Journal of Explosives & Propellants, 1997, 20(1): 59–61. DOI: 10.14077/j.issn.1007-7812.1997.01.019.
    [12]
    冯晓军, 王晓峰, 黄亚峰, 等. 铝粉含量对梯铝炸药爆压和冲击波参数的影响 [J]. 火炸药学报, 2009, 32(5): 1–4. DOI: 10.3969/j.issn.1007-7812.2009.05.001.

    FENG X J, WANG X F, HUANG Y F, et al. Effect of aluminium content on the detonation pressure and shock wave parameters of TNT/Al explosives [J]. Chinese Journal of Explosives & Propellants, 2009, 32(5): 1–4. DOI: 10.3969/j.issn.1007-7812.2009.05.001.
    [13]
    王玮, 王建灵, 郭炜, 等. 铝含量对RDX基含铝炸药爆压和爆速的影响 [J]. 火炸药学报, 2010, 33(1): 15–18. DOI: 10.3969/j.issn.1007-7812.2010.01.004.

    WANG W, WANG J L, GUO W, et al. Influence of Al content on the detonation pressure and detonation velocity of RDX-based aluminized explosive [J]. Chinese Journal of Explosives & Propellants, 2010, 33(1): 15–18. DOI: 10.3969/j.issn.1007-7812.2010.01.004.
    [14]
    聂少云, 高大元, 文雯, 等. 添加剂对B炸药安全和爆轰性能的影响 [J]. 火炸药学报, 2014, 37(3): 20–25. DOI: 10.3969/j.issn.1007-7812.2014.03.005.

    NIE S Y, GAO D Y, WEN W, et al. Effect of supplement on safety and detonation properties of composition B [J]. Chinese Journal of Explosives & Propellants, 2014, 37(3): 20–25. DOI: 10.3969/j.issn.1007-7812.2014.03.005.
    [15]
    王爱玉, 阮庆云, 陈海红, 等. 炸药试验方法: GJB 772A—97 [S]. 北京: 国防科工委军标出版发行部, 1997: 274–285.
    [16]
    黄文斌, 赵锋, 谷岩, 等. 炸药爆压测试方法 激光干涉测试法: GJB 9250—2017 [S]. 北京: 国家军用标准出版发行部, 2017.
    [17]
    孙承纬. 应用爆轰物理 [M]. 北京: 国防工业出版社, 2000.
    [18]
    赵万广, 周显明, 李加波, 等. LiF单晶的高压折射率及窗口速度的修正 [J]. 高压物理学报, 2014, 28(5): 571–576. DOI: 10.11858/gywlxb.2014.05.010.

    ZHAO W G, ZHOU X M, LI J B, et al. Refractive index of LiF single crystal at high pressure and its window correction [J]. Chinese Journal of High Pressure Physics, 2014, 28(5): 571–576. DOI: 10.11858/gywlxb.2014.05.010.
    [19]
    SHEFFIELD S A, BLOOMQUIST D D, TARVER C M. Subnanosecond measurements of detonation fronts in solid high explosives [J]. The Journal of Chemical Physics, 1984, 80(8): 3831–3844. DOI: 10.1063/1.447164.
    [20]
    LOBOIKO B G, LUBYATINSKY S N. Reaction zones of detonating solid explosives [J]. Combustion, Explosion, and Shock Waves, 2000, 36(6): 716–733. DOI: 10.1023/A:1002898505288.
    [21]
    TARVER C M. Detonation reaction zones in condensed explosives [J]. AIP Conference Proceedings, 2005, 845(1): 1026–1029. DOI: 10.1063/1.2263497.
    [22]
    GUSTAVSEN R L, SHEFFIELD S A, ALCON R R. Detonation wave profiles in HMX based explosives [J]. AIP Conference Proceedings, 1998, 429(1): 739. DOI: 10.1063/1.55674.
    [23]
    GUSTAVSEN R L, SHEFFIELD S A, ALCON R R. Progress in measuring detonation wave profiles in PBX9501 [C]//Proceedings of the 11th International Detonation Symposium. Snowmass, 1998.
    [24]
    裴红波, 黄文斌, 覃锦程, 等. 基于多普勒测速技术的JB-9014炸药反应区结构研究 [J]. 爆炸与冲击, 2018, 38(3): 485–490. DOI: 10.11883/bzycj-2017-0379.

    PEI H B, HUANG W B, QIN J C, et al. Reaction zone structure of JB-9014 explosive measured by PDV [J]. Explosion and Shock Waves, 2018, 38(3): 485–490. DOI: 10.11883/bzycj-2017-0379.
    [25]
    陈鲁英, 杨培进, 张林军, 等. CL-20炸药性能研究 [J]. 火炸药学报, 2003, 26(3): 65–67. DOI: 10.3969/j.issn.1007-7812.2003.03.019.

    CHEN L Y, YANG P J, ZHANG L J, et al. Study of the performance of explosive CL-20 [J]. Chinese Journal of Explosives & Propellants, 2003, 26(3): 65–67. DOI: 10.3969/j.issn.1007-7812.2003.03.019.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(1)

    Article Metrics

    Article views (631) PDF downloads(142) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return