Citation: | XU Huadong, YU Dong, WANG Yulin, SHI Jingfu, LIU Lei, SONG Di, MIAO Changqing. Thermo-mechanical characteristics of pre-tensioned fiber fabrics subjected to hypervelocity impact[J]. Explosion And Shock Waves, 2022, 42(5): 053301. doi: 10.11883/bzycj-2021-0307 |
[1] |
BUSLOV E P, KOMAROV I S, SELIVANOV V V, et al. Protection of inflatable modules of orbital stations against impacts of particles of space debris [J]. Acta Astronautica, 2019, 163: 54–61. DOI: 10.1016/j.actaastro.2019.04.046.
|
[2] |
CHRISTIANSEN E L, KERR J H, DE LA FUENTE H M, et al. Flexible and deployable meteoroid/debris shielding for spacecraft [J]. International Journal of Impact Engineering, 1999, 23(1): 125–136. DOI: 10.1016/S0734-743X(99)00068-8.
|
[3] |
SEEDHOUSE E. Bigelow aerospace: colonizing space one module at a time [M]. Cham, Switzerland: Springer, 2015: 26−39. DOI: 10.1007/978-3-319-05197-0.
|
[4] |
苗常青, 徐铧东, 靳广焓, 等. 纤维编织材料超高速撞击特性实验研究 [J]. 高压物理学报, 2019, 33(2): 024203. DOI: 10.11858/gywlxb.20180654.
MIAO C Q, XU H D, JIN G H, et al. Experimental study of hypervelocity impact characteristics for fiber fabric materials [J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 024203. DOI: 10.11858/gywlxb.20180654.
|
[5] |
KIM Y, CHOI C, KUMAR S K S, et al. Hypervelocity impact on flexible curable composites and pure fabric layer bumpers for inflatable space structures [J]. Composite Structures, 2017, 176: 1061–1072. DOI: 10.1016/j.compstruct.2017.06.035.
|
[6] |
TANAKA M, MORITAKA Y, AKAHOSHI Y, et al. Development of a lightweight space debris shield using high strength fibers [J]. International Journal of Impact Engineering, 2001, 26(1): 761–772. DOI: 10.1016/S0734-743X(01)00127-0.
|
[7] |
苗常青, 杜明俊, 黄磊, 等. 空间碎片柔性防护结构超高速撞击试验研究 [J]. 载人航天, 2017, 23(2): 173–176,227. DOI: 10.3969/j.issn.1674-5825.2017.02.006.
MIAO C Q, DU M J, HUANG L, et al. Experimental research on hypervelocity impact characteristics of flexible anti-debris multi-shields structure [J]. Manned Spaceflight, 2017, 23(2): 173–176,227. DOI: 10.3969/j.issn.1674-5825.2017.02.006.
|
[8] |
RUDOLPH M, SCHÄFER F, DESTEFANIS R, et al. Fragmentation of hypervelocity aluminum projectiles on fabrics [J]. Acta Astronautica, 2012, 76: 42–50. DOI: 10.1016/j.actaastro.2012.02.002.
|
[9] |
FAHRENTHOLD E P. Computational design of metal-fabric orbital debris shielding [J]. Journal of Spacecraft and Rockets, 2017, 54(5): 1060–1067. DOI: 10.2514/1.A33736.
|
[10] |
赵士操, 宋振飞, 赵晓平, 等. 基于SPH方法的纤维材料超高速碰撞模拟 [J]. 爆炸与冲击, 2013, 33(S1): 8–15.
ZHAO S C, SONG Z F, ZHAO X P, et al. Simulation of fiber composites under HVI based on SPH [J]. Explosion and Shock Waves, 2013, 33(S1): 8–15.
|
[11] |
ZHAO S C, SONG Z F, ESPINOSA H D. Modelling and analyses of fiber fabric and fabric-reinforced polymers under hypervelocity impact using smooth particle hydrodynamics [J]. International Journal of Impact Engineering, 2020, 144: 103586. DOI: 10.1016/j.ijimpeng.2020.103586.
|
[12] |
管公顺, 蒲东东, 哈跃, 等. 不同环境温度下铝球弹丸高速撞击编织物防护屏试验研究 [J]. 机械工程学报, 2015, 51(3): 66–72. DOI: 10.3901/JME.2015.03.066.
GUAN G S, PU D D, HA Y, et al. Experimental investigation of woven bumper shield impacted by a high-velocity aluminum sphere at different ambient temperature [J]. Journal of Mechanical Engineering, 2015, 51(3): 66–72. DOI: 10.3901/JME.2015.03.066.
|
[13] |
CHA J H, KIM Y, KUMAR S K S, et al. Ultra-high-molecular-weight polyethylene as a hypervelocity impact shielding material for space structures [J]. Acta Astronautica, 2020, 168: 182–190. DOI: 10.1016/j.actaastro.2019.12.008.
|
[14] |
林健宇, 罗斌强, 徐名扬, 等. 铝弹丸超高速撞击防护结构的研究进展 [J]. 高压物理学报, 2019, 33(3): 030112. DOI: 10.11858/gywlxb.20190774.
LIN J Y, LUO B Q, XU M Y, et al. Progress of aluminum projectile impacting on plate with hypervelocity [J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030112. DOI: 10.11858/gywlxb.20190774.
|
[15] |
JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
|
[16] |
RICE M H, MCQUEEN R G, WALSH J M. Compression of solids by strong shock waves [J]. Solid State Physics, 1958, 6: 1–63. DOI: 10.1016/S0081-1947(08)60724-9.
|
[17] |
HEBERLING T, TERRONES G, WESELOH W. Hydrocode simulations of a hypervelocity impact experiment over a range of velocities [J]. International Journal of Impact Engineering, 2018, 122: 1–9. DOI: 10.1016/j.ijimpeng.2018.07.019.
|
[18] |
WANG Y, XIA Y M. Experimental and theoretical study on the strain rate and temperature dependence of mechanical behaviour of Kevlar fibre [J]. Composites Part A: Applied Science and Manufacturing, 1999, 30(11): 1251–1257. DOI: 10.1016/S1359-835X(99)00035-4.
|
[19] |
WANG Y, XIA Y M. The effects of strain rate on the mechanical behaviour of Kevlar fibre bundles: an experimental and theoretical study [J]. Composites Part A: Applied Science and Manufacturing, 1998, 29(11): 1411–1415. DOI: 10.1016/S1359-835X(98)00038-4.
|
[20] |
SHIMEK M E, FAHRENTHOLD E P. Impact dynamics simulation for multilayer fabrics of various weaves [J]. AIAA Journal, 2015, 53(7): 1793–1811. DOI: 10.2514/1.J053504.
|
[21] |
BUYUK M, KURTARAN H, MARZOUGUI D, et al. Automated design of threats and shields under hypervelocity impacts by using successive optimization methodology [J]. International Journal of Impact Engineering, 2008, 35(12): 1449−1458. DOI: 10.1016/j.ijimpeng.2008.07.057.
|
[22] |
JOHNSON G R, STRYK R A. Conversion of 3D distorted elements into meshless particles during dynamic deformation [J]. International Journal of Impact Engineering, 2003, 28(9): 947–966. DOI: 10.1016/S0734-743X(03)00012-5.
|
[23] |
胡德安, 韩旭, 肖毅华, 等. 光滑粒子法及其与有限元耦合算法的研究进展 [J]. 力学学报, 2013, 45(5): 639–652. DOI: 10.6052/0459-1879-13-092.
HU D A, HAN X, XIAO Y H, et al. Research developments of smoothed particle hydrodynamics method and its coupling with finite element method [J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5): 639–652. DOI: 10.6052/0459-1879-13-092.
|
[24] |
张志春, 强洪夫, 高巍然. 一种新型SPH-FEM耦合算法及其在冲击动力学问题中的应用 [J]. 爆炸与冲击, 2011, 31(3): 243–249. DOI: 10.11883/1001-1455(2011)03-0243-07.
ZHANG Z C, QIANG H F, GAO W R. A new coupled SPH-FEM algorithm and its application to impact dynamics [J]. Explosion and Shock Waves, 2011, 31(3): 243–249. DOI: 10.11883/1001-1455(2011)03-0243-07.
|
[25] |
HE Q G, CHEN X W, CHEN J F. Finite element-smoothed particle hydrodynamics adaptive method in simulating debris cloud [J]. Acta Astronautica, 2020, 175: 99–117. DOI: 10.1016/j.actaastro.2020.05.056.
|
[26] |
徐铧东, 王玉林, 刘蕾, 等. 纤维织物FEM-SPH耦合单胞模型及超高速碰撞特性 [J]. 复合材料学报, 2021, 38(9): 3131–3140. DOI: 10.13801/j.cnki.fhclxb.20201231.001.
XU H D, WANG Y L, LIU L, et al. A fiber fabric unit-cell model based on FEM-SPH coupling algorithm and application on analyses of hypervelocity impact [J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3131–3140. DOI: 10.13801/j.cnki.fhclxb.20201231.001.
|
[27] |
GIANNAROS E, KOTZAKOLIOS A, SOTIRIADIS G, et al. On fabric materials response subjected to ballistic impact using meso-scale modeling: numerical simulation and experimental validation [J]. Composite Structures, 2018, 204: 745–754. DOI: 10.1016/j.compstruct.2018.07.090.
|
[28] |
韩雅菲, 唐恩凌, 郭凯, 等. 超高速碰撞2A12铝板产生的热辐射演化特征实验研究 [J]. 发光学报, 2019, 40(3): 374–381. DOI: 10.3788/fgxb20194003.0374.
HAN Y F, TANG E L, GUO K, et al. Experimental research on evolutionary characteristics of thermal radiation generated by hypervelocity impacting on 2A12 aluminum plate [J]. Chinese Journal of Luminescence, 2019, 40(3): 374–381. DOI: 10.3788/fgxb20194003.0374.
|
[29] |
HAN Y F, TANG E L, HE L P, et al. Evolutionary characteristics of thermal radiation induced by 2A12 aluminum plate under hypervelocity impact loading [J]. International Journal of Impact Engineering, 2019, 125: 173–179. DOI: 10.1016/j.ijimpeng.2018.11.013.
|