Volume 42 Issue 5
May  2022
Turn off MathJax
Article Contents
XU Huadong, YU Dong, WANG Yulin, SHI Jingfu, LIU Lei, SONG Di, MIAO Changqing. Thermo-mechanical characteristics of pre-tensioned fiber fabrics subjected to hypervelocity impact[J]. Explosion And Shock Waves, 2022, 42(5): 053301. doi: 10.11883/bzycj-2021-0307
Citation: XU Huadong, YU Dong, WANG Yulin, SHI Jingfu, LIU Lei, SONG Di, MIAO Changqing. Thermo-mechanical characteristics of pre-tensioned fiber fabrics subjected to hypervelocity impact[J]. Explosion And Shock Waves, 2022, 42(5): 053301. doi: 10.11883/bzycj-2021-0307

Thermo-mechanical characteristics of pre-tensioned fiber fabrics subjected to hypervelocity impact

doi: 10.11883/bzycj-2021-0307
  • Received Date: 2021-07-20
  • Rev Recd Date: 2021-11-01
  • Available Online: 2022-04-06
  • Publish Date: 2022-05-27
  • In an inflatable capsule, a bearing layer, which consists of high-performance fiber fabrics, is always used to bear its internal pressure load and to provide space debris protection. The pre-tension of the fiber fabric bearing layer, resulting from the pressure load, has a significant effect on the characteristics of the fiber fabric under space debris hypervelocity impact, thereby affecting the space debris protection performance of the inflatable capsule. To consider the thermo-mechanical behavior during hypervelocity impact, a numerical model for hypervelocity impact on pre-tensioned fiber fabrics is developed by introducing the Johnson-Cook strength model and Mie-Grüneisen state equation. The finite element method-smoothed particle hydrodynamics (FEM-SPH) coupling algorithm is used to discrete the yarn weaving structure of fiber fabrics. A fabric panel that has a rectangular configuration is pre-stretched by applying tensile stress boundary conditions. A projectile is then launched at a preset velocity and hit the four-side clamped pre-tensioned fiber fabric to simulate the hypervelocity impact process. The thermal-mechanical properties and space debris protection performance of the pre-tensioned fiber fabrics under hypervelocity impact are analyzed. The results show that with an increase in pre-tension, the perforation diameter of the fiber fabric increases, while the diffusion angle of the debris, as well as the absorption rate of the projectile kinetic energy and the temperature of the impact area, decrease. As a result, the pre-tension significantly reduces the space debris protection performance of the fiber fabrics.
  • loading
  • [1]
    BUSLOV E P, KOMAROV I S, SELIVANOV V V, et al. Protection of inflatable modules of orbital stations against impacts of particles of space debris [J]. Acta Astronautica, 2019, 163: 54–61. DOI: 10.1016/j.actaastro.2019.04.046.
    [2]
    CHRISTIANSEN E L, KERR J H, DE LA FUENTE H M, et al. Flexible and deployable meteoroid/debris shielding for spacecraft [J]. International Journal of Impact Engineering, 1999, 23(1): 125–136. DOI: 10.1016/S0734-743X(99)00068-8.
    [3]
    SEEDHOUSE E. Bigelow aerospace: colonizing space one module at a time [M]. Cham, Switzerland: Springer, 2015: 26−39. DOI: 10.1007/978-3-319-05197-0.
    [4]
    苗常青, 徐铧东, 靳广焓, 等. 纤维编织材料超高速撞击特性实验研究 [J]. 高压物理学报, 2019, 33(2): 024203. DOI: 10.11858/gywlxb.20180654.

    MIAO C Q, XU H D, JIN G H, et al. Experimental study of hypervelocity impact characteristics for fiber fabric materials [J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 024203. DOI: 10.11858/gywlxb.20180654.
    [5]
    KIM Y, CHOI C, KUMAR S K S, et al. Hypervelocity impact on flexible curable composites and pure fabric layer bumpers for inflatable space structures [J]. Composite Structures, 2017, 176: 1061–1072. DOI: 10.1016/j.compstruct.2017.06.035.
    [6]
    TANAKA M, MORITAKA Y, AKAHOSHI Y, et al. Development of a lightweight space debris shield using high strength fibers [J]. International Journal of Impact Engineering, 2001, 26(1): 761–772. DOI: 10.1016/S0734-743X(01)00127-0.
    [7]
    苗常青, 杜明俊, 黄磊, 等. 空间碎片柔性防护结构超高速撞击试验研究 [J]. 载人航天, 2017, 23(2): 173–176,227. DOI: 10.3969/j.issn.1674-5825.2017.02.006.

    MIAO C Q, DU M J, HUANG L, et al. Experimental research on hypervelocity impact characteristics of flexible anti-debris multi-shields structure [J]. Manned Spaceflight, 2017, 23(2): 173–176,227. DOI: 10.3969/j.issn.1674-5825.2017.02.006.
    [8]
    RUDOLPH M, SCHÄFER F, DESTEFANIS R, et al. Fragmentation of hypervelocity aluminum projectiles on fabrics [J]. Acta Astronautica, 2012, 76: 42–50. DOI: 10.1016/j.actaastro.2012.02.002.
    [9]
    FAHRENTHOLD E P. Computational design of metal-fabric orbital debris shielding [J]. Journal of Spacecraft and Rockets, 2017, 54(5): 1060–1067. DOI: 10.2514/1.A33736.
    [10]
    赵士操, 宋振飞, 赵晓平, 等. 基于SPH方法的纤维材料超高速碰撞模拟 [J]. 爆炸与冲击, 2013, 33(S1): 8–15.

    ZHAO S C, SONG Z F, ZHAO X P, et al. Simulation of fiber composites under HVI based on SPH [J]. Explosion and Shock Waves, 2013, 33(S1): 8–15.
    [11]
    ZHAO S C, SONG Z F, ESPINOSA H D. Modelling and analyses of fiber fabric and fabric-reinforced polymers under hypervelocity impact using smooth particle hydrodynamics [J]. International Journal of Impact Engineering, 2020, 144: 103586. DOI: 10.1016/j.ijimpeng.2020.103586.
    [12]
    管公顺, 蒲东东, 哈跃, 等. 不同环境温度下铝球弹丸高速撞击编织物防护屏试验研究 [J]. 机械工程学报, 2015, 51(3): 66–72. DOI: 10.3901/JME.2015.03.066.

    GUAN G S, PU D D, HA Y, et al. Experimental investigation of woven bumper shield impacted by a high-velocity aluminum sphere at different ambient temperature [J]. Journal of Mechanical Engineering, 2015, 51(3): 66–72. DOI: 10.3901/JME.2015.03.066.
    [13]
    CHA J H, KIM Y, KUMAR S K S, et al. Ultra-high-molecular-weight polyethylene as a hypervelocity impact shielding material for space structures [J]. Acta Astronautica, 2020, 168: 182–190. DOI: 10.1016/j.actaastro.2019.12.008.
    [14]
    林健宇, 罗斌强, 徐名扬, 等. 铝弹丸超高速撞击防护结构的研究进展 [J]. 高压物理学报, 2019, 33(3): 030112. DOI: 10.11858/gywlxb.20190774.

    LIN J Y, LUO B Q, XU M Y, et al. Progress of aluminum projectile impacting on plate with hypervelocity [J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030112. DOI: 10.11858/gywlxb.20190774.
    [15]
    JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
    [16]
    RICE M H, MCQUEEN R G, WALSH J M. Compression of solids by strong shock waves [J]. Solid State Physics, 1958, 6: 1–63. DOI: 10.1016/S0081-1947(08)60724-9.
    [17]
    HEBERLING T, TERRONES G, WESELOH W. Hydrocode simulations of a hypervelocity impact experiment over a range of velocities [J]. International Journal of Impact Engineering, 2018, 122: 1–9. DOI: 10.1016/j.ijimpeng.2018.07.019.
    [18]
    WANG Y, XIA Y M. Experimental and theoretical study on the strain rate and temperature dependence of mechanical behaviour of Kevlar fibre [J]. Composites Part A: Applied Science and Manufacturing, 1999, 30(11): 1251–1257. DOI: 10.1016/S1359-835X(99)00035-4.
    [19]
    WANG Y, XIA Y M. The effects of strain rate on the mechanical behaviour of Kevlar fibre bundles: an experimental and theoretical study [J]. Composites Part A: Applied Science and Manufacturing, 1998, 29(11): 1411–1415. DOI: 10.1016/S1359-835X(98)00038-4.
    [20]
    SHIMEK M E, FAHRENTHOLD E P. Impact dynamics simulation for multilayer fabrics of various weaves [J]. AIAA Journal, 2015, 53(7): 1793–1811. DOI: 10.2514/1.J053504.
    [21]
    BUYUK M, KURTARAN H, MARZOUGUI D, et al. Automated design of threats and shields under hypervelocity impacts by using successive optimization methodology [J]. International Journal of Impact Engineering, 2008, 35(12): 1449−1458. DOI: 10.1016/j.ijimpeng.2008.07.057.
    [22]
    JOHNSON G R, STRYK R A. Conversion of 3D distorted elements into meshless particles during dynamic deformation [J]. International Journal of Impact Engineering, 2003, 28(9): 947–966. DOI: 10.1016/S0734-743X(03)00012-5.
    [23]
    胡德安, 韩旭, 肖毅华, 等. 光滑粒子法及其与有限元耦合算法的研究进展 [J]. 力学学报, 2013, 45(5): 639–652. DOI: 10.6052/0459-1879-13-092.

    HU D A, HAN X, XIAO Y H, et al. Research developments of smoothed particle hydrodynamics method and its coupling with finite element method [J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5): 639–652. DOI: 10.6052/0459-1879-13-092.
    [24]
    张志春, 强洪夫, 高巍然. 一种新型SPH-FEM耦合算法及其在冲击动力学问题中的应用 [J]. 爆炸与冲击, 2011, 31(3): 243–249. DOI: 10.11883/1001-1455(2011)03-0243-07.

    ZHANG Z C, QIANG H F, GAO W R. A new coupled SPH-FEM algorithm and its application to impact dynamics [J]. Explosion and Shock Waves, 2011, 31(3): 243–249. DOI: 10.11883/1001-1455(2011)03-0243-07.
    [25]
    HE Q G, CHEN X W, CHEN J F. Finite element-smoothed particle hydrodynamics adaptive method in simulating debris cloud [J]. Acta Astronautica, 2020, 175: 99–117. DOI: 10.1016/j.actaastro.2020.05.056.
    [26]
    徐铧东, 王玉林, 刘蕾, 等. 纤维织物FEM-SPH耦合单胞模型及超高速碰撞特性 [J]. 复合材料学报, 2021, 38(9): 3131–3140. DOI: 10.13801/j.cnki.fhclxb.20201231.001.

    XU H D, WANG Y L, LIU L, et al. A fiber fabric unit-cell model based on FEM-SPH coupling algorithm and application on analyses of hypervelocity impact [J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3131–3140. DOI: 10.13801/j.cnki.fhclxb.20201231.001.
    [27]
    GIANNAROS E, KOTZAKOLIOS A, SOTIRIADIS G, et al. On fabric materials response subjected to ballistic impact using meso-scale modeling: numerical simulation and experimental validation [J]. Composite Structures, 2018, 204: 745–754. DOI: 10.1016/j.compstruct.2018.07.090.
    [28]
    韩雅菲, 唐恩凌, 郭凯, 等. 超高速碰撞2A12铝板产生的热辐射演化特征实验研究 [J]. 发光学报, 2019, 40(3): 374–381. DOI: 10.3788/fgxb20194003.0374.

    HAN Y F, TANG E L, GUO K, et al. Experimental research on evolutionary characteristics of thermal radiation generated by hypervelocity impacting on 2A12 aluminum plate [J]. Chinese Journal of Luminescence, 2019, 40(3): 374–381. DOI: 10.3788/fgxb20194003.0374.
    [29]
    HAN Y F, TANG E L, HE L P, et al. Evolutionary characteristics of thermal radiation induced by 2A12 aluminum plate under hypervelocity impact loading [J]. International Journal of Impact Engineering, 2019, 125: 173–179. DOI: 10.1016/j.ijimpeng.2018.11.013.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(3)

    Article Metrics

    Article views (382) PDF downloads(60) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return