Volume 42 Issue 8
Sep.  2022
Turn off MathJax
Article Contents
SUN Jinshan, XIE Xianqi, JIA Yongsheng, YAO Yingkang, LIU Changbang, HAN Chuanwei, WANG Honggang, HUANG Xiaowu. Prediction of sinking down and early break in the air of reinforced concrete chimney during blasting demolition[J]. Explosion And Shock Waves, 2022, 42(8): 085202. doi: 10.11883/bzycj-2021-0316
Citation: SUN Jinshan, XIE Xianqi, JIA Yongsheng, YAO Yingkang, LIU Changbang, HAN Chuanwei, WANG Honggang, HUANG Xiaowu. Prediction of sinking down and early break in the air of reinforced concrete chimney during blasting demolition[J]. Explosion And Shock Waves, 2022, 42(8): 085202. doi: 10.11883/bzycj-2021-0316

Prediction of sinking down and early break in the air of reinforced concrete chimney during blasting demolition

doi: 10.11883/bzycj-2021-0316
  • Received Date: 2021-07-27
  • Rev Recd Date: 2022-04-25
  • Available Online: 2022-05-12
  • Publish Date: 2022-09-09
  • The collapse of the support part and break in the air of the reinforced concrete chimney during blasting demolition seriously affect engineering safety. Monitoring and analysis of a 180m chimney demolition were carried out to analyze the mechanism of these phenomena and distinguish them. Based on the characteristics of the stress-strain curve of concrete, the progressive failure process of the support part is analyzed. The static equilibrium equation of the cross-section is constructed, and the discrimination model for the instability and support part collapse of the chimney is proposed. By establishing the dynamic response model of the chimney above the blasting notch under the bottom impact, the propagation characteristics of the stress wave in the chimney are analyzed. The results show that the ratio of gravity moment to resisting moment can be used as a criterion of instability determination, considering the distribution characteristics of stress and strain in the cross-section of the support part. The compression failure of the concrete in the support part is almost inevitable under large eccentric compression. The necessary condition to prevent support part collapse of the chimney is that the minimum residual bearing capacity of the support part is not less than the weight of the chimney. When the chimney with a certain initial velocity impacts the foundation at the end of the support part collapse, an impact load will be generated and cause the strain in the middle of the chimney greater than the strain at the bottom. The elevation amplification effect of dynamic strain is an important reason for the chimney breaking in the air. The higher the chimney is, the shorter the impact duration is, and the more significant the dynamic strain elevation amplification effect is. As the height increases, the position of the most dangerous section of the chimney will move from the middle and lower to the middle and upper.
  • loading
  • [1]
    褚怀保, 徐鹏飞, 叶红宇, 等. 钢筋混凝土烟囱爆破拆除倒塌与受力过程研究 [J]. 振动与冲击, 2015, 34(22): 183–186,198. DOI: 10.13465/j.cnki.jvs.2015.22.032.

    CHU H B, XU P F, YE H Y, et al. Collapse process and load-bearing process of reinforced concrete chimney during blasting demolition [J]. Journal of Vibration and Shock, 2015, 34(22): 183–186,198. DOI: 10.13465/j.cnki.jvs.2015.22.032.
    [2]
    郑炳旭, 魏晓林, 陈庆寿. 钢筋混凝土高烟囱爆破切口支撑部破坏观测研究 [J]. 岩石力学与工程学报, 2006, 25(S2): 3513–3517. DOI: 10.3321/j.issn:1000-6915.2006.z2.026.

    ZHENG B X, WEI X L, CHEN Q S. Study on damage surveying of cutting-support of high reinforced concrete chimney demolished by blasting [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S2): 3513–3517. DOI: 10.3321/j.issn:1000-6915.2006.z2.026.
    [3]
    郑炳旭, 魏晓林, 陈庆寿. 钢筋混凝土高烟囱切口支撑部失稳力学分析 [J]. 岩石力学与工程学报, 2007, 26(S1): 3348–3354. DOI: 10.3321/j.issn:1000-6915.2007.z1.114.

    ZHENG B X, WEI X L, CHEN Q S. Mechanical analysis of cutting-support destabilization of high reinforced concrete chimney [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(S1): 3348–3354. DOI: 10.3321/j.issn:1000-6915.2007.z1.114.
    [4]
    徐鹏飞, 刘殿书, 张英才. 烟囱高位组合切口定向爆破倒塌过程数值研究 [J]. 振动与冲击, 2017, 36(15): 265–270. DOI: 10.13465/j.cnki.jvs.2017.15.040.

    XU P F, LIU D S, ZHANG Y C. Numerical study on the directional blasting collapse process of chimney with high combined incision [J]. Journal of Vibration and Shock, 2017, 36(15): 265–270. DOI: 10.13465/j.cnki.jvs.2017.15.040.
    [5]
    言志信, 叶振辉, 刘培林, 等. 钢筋混凝土高烟囱定向爆破拆除倒塌过程研究 [J]. 振动与冲击, 2011, 30(9): 197–201. DOI: 10.3969/j.issn.1000-3835.2011.09.041.

    YAN Z X, YE Z H, LIU P L, et al. Collapsing process of high reinforced concrete chimney in blasting demolition [J]. Journal of Vibration and Shock, 2011, 30(9): 197–201. DOI: 10.3969/j.issn.1000-3835.2011.09.041.
    [6]
    杨建华, 马玉岩, 卢文波, 等. 高烟囱爆破拆除倾倒折断力学分析 [J]. 岩土力学, 2011, 32(2): 459–464. DOI: 10.3969/j.issn.1000-7598.2011.02.023.

    YANG J H, MA Y Y, LU W B, et al. Analysis of fracture mechanics for falling tall chimneys during demolition blasting [J]. Rock and Soil Mechanics, 2011, 32(2): 459–464. DOI: 10.3969/j.issn.1000-7598.2011.02.023.
    [7]
    言志信, 叶振辉, 刘培林. 烟囱定向爆破拆除倒塌过程 [J]. 爆炸与冲击, 2010, 30(6): 607–613. DOI: 10.11883/1001-1455(2010)06-0607-07.

    YAN Z X, YE Z H, LIU P L. Collapsing process of chimney demolition by directional blasting [J]. Explosion and Shock Waves, 2010, 30(6): 607–613. DOI: 10.11883/1001-1455(2010)06-0607-07.
    [8]
    唐海, 梁开水, 张成良. 烟囱爆破倾倒折断的力学浅析 [J]. 爆破, 2003, 20(1): 9–11. DOI: 10.3963/j.issn.1001-487X.2003.01.003.

    TANG H, LIANG K S, ZHANG C L. Mechanics analysis of fall-down process of chimney by blasting demolition [J]. Blasting, 2003, 20(1): 9–11. DOI: 10.3963/j.issn.1001-487X.2003.01.003.
    [9]
    侯吉旋, 李志昂, 郭兴, 等. 质量非均匀分布的烟囱在倾倒过程中的力学分析 [J]. 大学物理, 2017, 36(6): 50–51,55. DOI: 10.16854/j.cnki.1000-0712.2017.06.013.

    HOU J X, LI Z A, GUO X, et al. Mechanical analysis of the non-uniform falling chimney [J]. College Physics, 2017, 36(6): 50–51,55. DOI: 10.16854/j.cnki.1000-0712.2017.06.013.
    [10]
    王云剑. 烟囱纵向冲击断裂试验与分析 [J]. 力学与实践, 2000, 22(2): 41–43. DOI: 10.3969/j.issn.1000-0879.2000.02.012.

    WANG Y J. Longitudinal shock test and analysis on chimney models [J]. Mechanics in Engineering, 2000, 22(2): 41–43. DOI: 10.3969/j.issn.1000-0879.2000.02.012.
    [11]
    PALLARÉS F J, AGÜERO A, MARTÍN M. Seismic behaviour of industrial masonry chimneys [J]. International Journal of Solids and Structures, 2006, 43(7/8): 2076–2090. DOI: 10.1016/j.ijsolstr.2005.06.014.
    [12]
    WOLF J P, SKRIKERUD P E. Collapse of chimney caused by earthquake or by aircraft impingement with subsequent impact on reactor building [J]. Nuclear Engineering and Design, 1979, 51(3): 453–472. DOI: 10.1016/0029-5493(79)90133-X.
    [13]
    WILSON J L. Earthquake response of tall reinforced concrete chimneys [J]. Engineering Structures, 2003, 25(1): 11–24. DOI: 10.1016/S0141-0296(02)00098-6.
    [14]
    HUANG W, GOULD P L. 3-D pushover analysis of a collapsed reinforced concrete chimney [J]. Finite Elements in Analysis and Design, 2007, 43(11/12): 879–887. DOI: 10.1016/j.finel.2007.05.005.
    [15]
    MINGHINI F, MILANI G, TRALLI A. Seismic risk assessment of a 50m high masonry chimney using advanced analysis techniques [J]. Engineering Structures, 2014, 69: 255–270. DOI: 10.1016/j.engstruct.2014.03.028.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Article Metrics

    Article views (493) PDF downloads(99) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return