Volume 42 Issue 7
Jul.  2022
Turn off MathJax
Article Contents
ZHANG Siyuan, LIU Zheng, WANG Zhiqiang, WANG Jinjun, LI Guofeng. Underwater needle-plate electrical bubble pulsation and impact characteristics[J]. Explosion And Shock Waves, 2022, 42(7): 072201. doi: 10.11883/bzycj-2021-0421
Citation: ZHANG Siyuan, LIU Zheng, WANG Zhiqiang, WANG Jinjun, LI Guofeng. Underwater needle-plate electrical bubble pulsation and impact characteristics[J]. Explosion And Shock Waves, 2022, 42(7): 072201. doi: 10.11883/bzycj-2021-0421

Underwater needle-plate electrical bubble pulsation and impact characteristics

doi: 10.11883/bzycj-2021-0421
  • Received Date: 2021-10-08
  • Rev Recd Date: 2022-03-28
  • Available Online: 2022-03-29
  • Publish Date: 2022-07-25
  • In order to clarify the bubble pulsation process and pressure wave shock characteristics produced in the process of pulse discharge energy release in water, based on the principle of energy equivalence, the liquid-phase pulse energy was transformed into an explosion source with the same energy, and the fluid-structure coupling model of underwater explosion with needle-plate electrode structure was established in LS-DYNA software to simulate the bubble pulsation process on the upper surface of steel substrate. By comparing with the experimental physical images obtained by high-speed photography, it was found that the numerical simulation was highly consistent with the experimental results in terms of bubble morphology and time evolution scales. On this basis, the impact characteristics of the bubbles was further analyzed, and the results show that the maximum impact pressure of the shock wave on the steel base can reach 94.9 MPa when the discharge is carried out with a 4-mm gap at a voltage of 20 kV and a capacitance of 0.8 μF. Besides, the bubble radius, expansion, jet velocity, pulsation period and peak shock wave pressure enhance with the increase of the discharge energy and decrease with the rise of the hydrostatic pressure. Among them, the increase of water pressure has little effect on the bubble expansion rate. The peak value of secondary pressure wave rises from 2.89 MPa to 4.09 MPa with the increase of voltage (14−20 kV), which reaches 41.5%; and up from 5.15 MPa to 6.36 MPa with the rise of hydrostatic pressure (202.65−506.63 kPa), which reaches 23.5%. And the enhancement of discharge energy and water pressure improves the secondary pressure wave significantly. Meanwhile, with the improvement of transmission distance, the proportion of secondary pressure wave in the peak pressure of shock wave rises from 12.6% to 35.3%, and the secondary pressure wave at the far-field discharge location cannot be ignored.
  • loading
  • [1]
    YAN D, BIAN D C, ZHAO J C, et al. Study of the electrical characteristics, shock-wave pressure characteristics, and attenuation law based on pulse discharge in water [J]. Shock and Vibration, 2016(5). DOI: 10.1155/2016/6412309.
    [2]
    OSHITA D, HOSSEINI S H R, OKUKA Y, et al. Characteristic of cavitation bubbles and shock waves generated by pulsed electric discharges with different voltages [C]// 2012 IEEE International Power Modulator and High Voltage Conference (IPMHVC). USA: San Diego, 2012: 102–105. DOI: 10.1109/IPMHVC.2012.6518690.
    [3]
    HIGA O, MATSUBARA R, HIGA K, et al. Mechanism of the shock wave generation and energy efficiency by underwater discharge [J]. The International Journal of Multiphysics, 2012, 6(2): 89–97. DOI: 10.1260/1750-9548.6.2.89.
    [4]
    COLE P. 水下爆炸 [M]. 罗耀杰, 译. 北京: 国防工业出版社, 1960: 2–6.
    [5]
    孙冰. 液相放电等离子体及其应用 [M]. 北京: 科学出版社, 2013: 120–127.
    [6]
    李显东, 刘毅, 李志远, 等. 不均匀电场下水中脉冲放电观测及沉积能量对激波的影响 [J]. 中国电机工程学报, 2017, 37(10): 3028–3036. DOI: 10.13334/j.0258-8013.pcsee.160315.

    LI X D, LIU Y, LI Z Y, et al. Observation of underwater pulse discharge and influence of deposited energy on shock wave in non-uniform electric Field [J]. Proceedings of the CSEE, 2017, 37(10): 3028–3036. DOI: 10.13334/j.0258-8013.pcsee.160315.
    [7]
    LI N, HUANG J G, LEI K Z, et al. The characteristic of the bubble generated by underwater high-voltage discharge [J]. Journal of Electrostatics, 2011, 69(4): 291–295. DOI: 10.1016/j.elstat.2011.04.004.
    [8]
    ZOHOOR M, MOUSAVI S M. Experimental analysis and smoothed particle hydrodynamics modeling of electrohydraulic forming of sheet metal parts [J]. Journal of Manufacturing Processes, 2018, 35(10): 16–28. DOI: 10.1016/j.jmapro.2018.06.039.
    [9]
    MAMUTOV A V, GOLOVASHCHENKO S F, MAMUTOV V S, et al. Modeling of electrohydraulic forming of sheet metal parts [J]. Journal of Materials Processing Tech, 2015, 219: 84–100. DOI: 10.1016/j.jmatprotec.2014.11.045.
    [10]
    HIDEKI H, SEISAKU I, HIRONORI M, et al. Propagation of underwater shock wave and gas bubble behavior induced by electrical discharge in water [J]. Applied Mechanics and Materials, 2014, 566: 403–408. DOI: 10.4028/www.scientific.net/AMM.566.403.
    [11]
    CHANG J S, URASHIMA K, UCHIDA Y, et al. Characteristics of pulsed arc electrohydraulic discharges and their application to water treatments [J]. Tokyo Denki University Engineering Research, 2002, 50(11): 1–12.
    [12]
    KOSENKOV V M, BYCHKOV V M. Influence of some axially symmetric stepped forms of discharge chambers on the efficiency of electrohydraulic forming [J]. Surface Engineering and Applied Electrochemistry, 2019, 55(1): 89–96. DOI: 10.3103/S1068375519010113.
    [13]
    刘毅, 李志远, 李显东, 等. 水中脉冲激波对模拟岩层破碎试验 [J]. 电工技术学报, 2016, 31(24): 71–78. DOI: 10.19595/j.cnki.1000-6753.tces.2016.24.008.

    LIU Y, LI Z Y. LI X D, et al. Experiments on the fracture of simulated stratum by underwater pulsed discharge shock waves [J]. Transactions of China Electrotechnical Society, 2016, 31(24): 71–78. DOI: 10.19595/j.cnki.1000-6753.tces.2016.24.008.
    [14]
    王志强, 曹云霄, 邢政伟, 等. 高压脉冲放电破碎菱镁矿石的实验研究 [J]. 电工技术学报, 2019, 34(4): 863–870. DOI: 10.19595/j.cnki.1000-6753.tces.180109.

    WANG Z Q, CAO Y X, XING Z W, et al. Experimental study on fragmentation of magnesite ores by pulsed high-voltage discharge [J]. Transactions of China Electrotechnical Society, 2019, 34(4): 863–870. DOI: 10.19595/j.cnki.1000-6753.tces.180109.
    [15]
    刘毅, 李志远, 李显东, 等. 水中大电流脉冲放电激波影响因素分析 [J]. 中国电机工程学报, 2017, 37(9): 2741–2749. DOI: 10.13334/j.0258-8013.pcsee.160417.

    LIU Y, LI Z Y, LI X D, et al. Effect factors of the characteristics of shock waves induced by underwater high current pulsed discharge [J]. Proceedings of the CSEE, 2017, 37(9): 2741–2749. DOI: 10.13334/j.0258-8013.pcsee.160417.
    [16]
    刘强, 孙鹞鸿. 水中脉冲电晕放电等离子体特性及气泡运动 [J]. 高电压技术, 2006, 32(2): 54–56. DOI: 10.13336/j.1003-6520.hve.2006.02.022.

    LIU Q, SUN Y H. Plasma characteristics of pulsed corona discharge in water and moving process of the bubble [J]. High Voltage Engineering, 2006, 32(2): 54–56. DOI: 10.13336/j.1003-6520.hve.2006.02.022.
    [17]
    刘振, 管显涛, 张允, 等. 水下放电同相位多气泡动力学实验研究 [J]. 高电压技术, 2021, 47(9): 3337–3345. DOI: 10.13336/j.1003-6520.hve.20201146.

    LIU Z, GUAN X T, ZHANG Y, et al. Experimental study on the dynamics of multiple bubbles in the same phase of underwater discharge [J]. High Voltage Engineering, 2021, 47(9): 3337–3345. DOI: 10.13336/j.1003-6520.hve.20201146.
    [18]
    荀涛, 杨汉武, 张建德, 等. 加速器电水锤数值模拟与实验研究 [J]. 强激光与粒子束, 2010, 22(2): 425–429. DOI: 10.3788/HPLPB20102202.0425.

    XUN T, YANG H W, ZHANG J D, et al. Numerical and experimental investigation on water shocks due to pulsed discharge in accelerators [J]. High Power Laser and Particle Beams, 2010, 22(2): 425–429. DOI: 10.3788/HPLPB20102202.0425.
    [19]
    LI X W, Chao Y C, Wu J, et al. Study of the shock waves characteristics generated by underwater electrical wire explosion [J]. Journal of Applied Physics, 2015, 118(2): 023301. DOI: 10.1063/1.4926374.
    [20]
    MARTIN E A. Experimental investigation of a high-energy density, high-pressure arc plasma [J]. Journal of Applied Physics, 1960, 31(2): 255–267. DOI: 10.1063/1.1735555.
    [21]
    刘明光, 颜怀梁, 温光一. 电水锤效应及其应用 [J]. 四川工业学院学报, 1989, 8(3): 188–193.

    LIU M G, YAN H L, WEN G Y. Electrohydraulig effect and applications [J]. Sichuan University of Science and Technology, 1989, 8(3): 188–193.
    [22]
    BLUHN H, FREY W, GIESE H, et al. Application of pulsed HV discharges to material fragmentation and recycling [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2000, 7(5): 625–636. DOI: 10.1109/94.879358.
    [23]
    王志凯, 周鹏, 孙波, 等. 气泡及其破碎兴波对浮动冲击平台影响探究 [J]. 爆炸与冲击, 2019, 39(9): 093201. DOI: 10.11883/bzycj-2018-0212.

    WANG Z K, ZHOU P, SUN B, et al. Influence of bubbles and breaking waves on floating shock platform [J]. Explosion and Shock Waves, 2019, 39(9): 093201. DOI: 10.11883/bzycj-2018-0212.
    [24]
    邓贵德. 离散多层爆炸容器内爆载荷和抗爆特性研究 [D]. 杭州: 浙江大学, 2008: 35–37.
    [25]
    WANG J, GUO J, YAO X L, et al. Dynamic buckling of stiffened plates subjected to explosion impact loads [J]. Shock Waves, 2017(1): 37–52. DOI: 10.1007/s00193-016-0638-z.
    [26]
    SILVANO B, GIOVANNI B C. Implosion of an underwater spark-generated bubble and acoustic energy evaluation using the Rayleigh model [J]. The Journal of the Acoustical Society of America, 2002, 111(6): 2594–2600. DOI: 10.1121/1.1476919.
    [27]
    MOEZZI-RAFIE H, NASIRI M M. An investigation on the flow physics of bubble implosion using numerical techniques [J]. Ocean Engineering, 2018, 153(4): 185–192. DOI: 10.1016/j.oceaneng.2018.01.094.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(6)

    Article Metrics

    Article views (378) PDF downloads(69) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return