Volume 42 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
LI Pengcheng, ZHANG Xianfeng, LIU Chuang, WEI Haiyang, LIU Junwei, DENG Yuxuan. Study on the influence of attack angle and incident angle on ballistic characteristics of projectiles penetration into thin concrete targets[J]. Explosion And Shock Waves, 2022, 42(11): 113302. doi: 10.11883/bzycj-2021-0435
Citation: LI Pengcheng, ZHANG Xianfeng, LIU Chuang, WEI Haiyang, LIU Junwei, DENG Yuxuan. Study on the influence of attack angle and incident angle on ballistic characteristics of projectiles penetration into thin concrete targets[J]. Explosion And Shock Waves, 2022, 42(11): 113302. doi: 10.11883/bzycj-2021-0435

Study on the influence of attack angle and incident angle on ballistic characteristics of projectiles penetration into thin concrete targets

doi: 10.11883/bzycj-2021-0435
  • Received Date: 2021-10-18
  • Rev Recd Date: 2022-01-17
  • Available Online: 2022-10-21
  • Publish Date: 2022-11-18
  • Experiments of a 30 mm ogive-nose projectile penetration into two layers of concrete targets are carried out to study the characteristics of projectile oblique penetrating a finite thickness concrete target. A high-speed camera was used to record the projectile deflection, velocity, and trajectory in the process of penetration. Vernier caliper and ruler were used to measure the size of the front and rear craters. The parameters of the perforation damage of the concrete slab and the ballistic parameters and trajectories were obtained. The influence law of attack angle and incident angle on the characteristics of perforation damage of concrete slab, attitude deflection during the perforation process, deflection angle after penetration, and ballistic trajectory are analyzed and studied. The experimental results show that there is a phenomenon of secondary deflection in the penetration process. With the increase of incident angle, the phenomenon of secondary deflection is more obvious. The initial attack angle inhibits the occurrence of the phenomenon of secondary deflection. With the increase of the attack angle, the inhibition effect is more significant. With the increase of the incident angle, the deflection angle after penetration increases gradually. Compared with the incident angle, the initial attack angle has a greater influence on the deflection angle behind the concrete target. The initial attack angle promotes the increase of the deflection angle after penetration when the initial attack angle is the same as the incident angle. When the initial attack angle is opposite to the incident, a small initial attack angle can inhibit the increase of the deflection angle after penetration, but a large one becomes the main factor affecting the deflection angle after penetration. The larger the initial attack angle, the larger the deflection angle after penetration.
  • loading
  • [1]
    GOLDSMITH W. Non-ideal projectile impact on targets [J]. International Journal of Impact Engineering, 1999, 22(2/3): 95–395. DOI: 10.1016/S0734-743X(98)00031-1.
    [2]
    FREW D J, FORRESTAL M J, HANCHAK S J. Penetration experiments with limestone targets and ogive-nose steel projectiles [J]. Journal of Applied Mechanics, 2000, 67(4): 841–845. DOI: 10.1115/1.1331283.
    [3]
    杜华池, 张先锋, 刘闯, 等. 弹体斜侵彻多层间隔钢靶的弹道特性 [J]. 兵工学报, 2021, 42(6): 1204–1214. DOI: 10.3969/j.issn.1000-1093.2021.06.010.

    DU H C, ZHANG X F, LIU C, et al. Trajectory characteristics of projectile obliquely penetrating into steel target with multi-layer space structure [J]. Acta Armamentarii, 2021, 42(6): 1204–1214. DOI: 10.3969/j.issn.1000-1093.2021.06.010.
    [4]
    FORRESTAL M J, FREW D J, HANCHAK S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1996, 18(5): 465–476. DOI: 10.1016/0734-743X(95)00048-F.
    [5]
    武海军, 黄风雷, 王一楠, 等. 高速侵彻混凝土弹体头部侵蚀终点效应实验研究 [J]. 兵工学报, 2012, 33(1): 48–55.

    WU H J, HUANG F L, WANG Y N, et al. Experimental investigation on projectile nose eroding effect of high-velocity penetration into concrete [J]. Acta Armamentarii, 2012, 33(1): 48–55.
    [6]
    GAO X D, LI Q M. Trajectory instability and convergence of the curvilinear motion of a hard projectile in deep penetration [J]. International Journal of Impact Engineering, 2017, 121: 123–142.DOI. DOI: 10.1016/j.ijmecsci.2016.12.021.
    [7]
    马爱娥, 黄风雷. 弹体斜侵彻钢筋混凝土的试验研究 [J]. 北京理工大学学报, 2007, 27(6): 482–486. DOI: 10.3969/j.issn.1001-0645.2007.06.004.

    MA A E, HUANG F L. Experimental research on oblique penetration into reinforced concrete [J]. Transactions of Beijing Institute of Technology, 2007, 27(6): 482–486. DOI: 10.3969/j.issn.1001-0645.2007.06.004.
    [8]
    吕中杰, 徐钰巍, 黄风雷. 弹体斜侵彻混凝土过程中的方向偏转 [J]. 兵工学报, 2009, 30(S2): 301–304.

    LV Z J, XU Y W, HUANG F L. Transverse deflection of projectile obliquely penetrating into concrete [J]. Acta Armamentarii, 2009, 30(S2): 301–304.
    [9]
    王可慧, 宁建国, 李志康, 等. 高速弹体非正侵彻混凝土靶的弹道偏转实验研究 [J]. 高压物理学报, 2013, 27(4): 561–566. DOI: 10.11858/gywlxb.2013.04.015.

    WANG K H, NING J G, LI Z K, et al. Ballistic trajectory of high-velocity projectile obliquely penetrating concrete target [J]. Chinese Journal of High Pressure Physics, 2013, 27(4): 561–566. DOI: 10.11858/gywlxb.2013.04.015.
    [10]
    BERNARD R S, CREIGHTON D C. Projectile penetration in soil and rock: analysis for non-normal impact: SL-79-15 [R]. Vicksburg: U. S. Army Engineer Waterways Experiment Station, 1979.
    [11]
    KONG X Z, FANG Q, HONG J, et al. Numerical study of the wake separation and reattachment effect on the trajectory of a hard projectile [J]. International Journal of Protective Structures, 2014, 5(1): 97–117. DOI: 10.1260/2041-4196.5.1.97.
    [12]
    LI Q M, FLORES-JOHNSON E A. Hard projectile penetration and trajectory stability [J]. International Journal of Impact Engineering, 2011, 38(10): 815–823. DOI: 10.1016/j.ijimpeng.2011.05.005.
    [13]
    李进忠, 蔡汉文, 崔秉贵, 等. 混凝土侵彻的工程计算模型 [J]. 兵工学报, 1995, 16(4): 86–88.

    LI J Z, CAI H W, CUI B G, et al. An engineering calculation model for the penetration in concrete targets [J]. Acta Armamentarii, 1995, 16(4): 86–88.
    [14]
    尹放林, 王明洋, 钱七虎, 等. 弹丸斜入射对侵彻深度的影响 [J]. 爆炸与冲击, 1998, 18(1): 69–76.

    YIN F L, WANG M Y, QIAN Q H, et al. Penetration depth of projectile oblique into target [J]. Explosion and Shock Waves, 1998, 18(1): 69–76.
    [15]
    闪雨. 弹体非正侵彻混凝土质量侵蚀与运动轨迹研究 [D]. 北京: 北京理工大学, 2015: 55–80.

    SHAN Y. Investigation on the mass abrasion and motion of the projectile non-normal penetrating into concrete [D]. Beijing: Beijing Institute of Technology, 2015: 55–80.
    [16]
    黄民荣. 刚性弹体对混凝土靶的侵彻与贯穿机理研究 [D]. 南京: 南京理工大学, 2011: 53–107.

    HUANG M R. Penetration and perforation mechanism of rigid projectile into the concrete target [D]. Nanjing: Nanjing University of Science and Technology, 2011: 53–107.
    [17]
    WARREN T L, HANCHAK S J, POORMON K L. Penetration of limestone targets by ogive-nosed VAR 4340 steel projectiles at oblique angles: experiments and simulations [J]. International Journal of Impact Engineering, 2004, 30(10): 1307–1331. DOI: 10.1016/j.ijimpeng.2003.09.047.
    [18]
    何涛. 动能弹在不同材料靶体中的侵彻行为研究 [D]. 合肥: 中国科学技术大学, 2007: 12–40.

    HE T. A study on the penetration of projectiles into targets made of various materials [D]. Hefei: University of Science and Technology of China, 2007: 12-40.
    [19]
    CHEN X W, FAN S C, LI Q M. Oblique and normal perforation of concrete targets by a rigid projectile [J]. International Journal of Impact Engineering, 2004, 30(6): 617–637. DOI: 10.1016/j.ijimpeng.2003.08.003.
    [20]
    CHEN X W, LI X L, HUANG F L, et al. Normal perforation of reinforced concrete target by rigid projectile [J]. International Journal of Impact Engineering, 2008, 35(10): 1119–1129. DOI: 10.1016/j.ijimpeng.2008.01.002.
    [21]
    薛建锋. 弹体侵彻与贯穿混凝土靶的效应研究 [D]. 南京: 南京理工大学, 2016: 15–95.

    XUE J F. Research on the performance of projectile penetration and perforation into concrete target [D]. Nanjing: Nanjing University of Science and Technology, 2016: 15–95.
    [22]
    DUAN Z P, LI S R, MA Z F, et al. Attitude deflection of oblique perforation of concrete targets by a rigid projectile [J]. Defence Technology, 2020, 16(3): 596–608. DOI: 10.1016/j.dt.2019.09.009.
    [23]
    段卓平, 李淑睿, 马兆芳, 等. 刚性弹体斜侵彻贯穿混凝土靶的姿态偏转理论模型 [J]. 爆炸与冲击, 2019, 39(6): 063302. DOI: 10.11883/bzycj-2018-0411.

    DUAN Z P, LI S R, MA Z F, et al. Analytical model for attitude deflection of rigid projectile during oblique perforation of concrete targets [J]. Explosion and Shock Waves, 2019, 39(6): 063302. DOI: 10.11883/bzycj-2018-0411.
    [24]
    马兆芳, 段卓平, 欧卓成, 等. 弹体斜侵彻贯穿薄混凝土靶姿态变化实验和理论研究 [J]. 兵工学报, 2015, 36(S1): 248–254.

    MA Z F, DUAN Z P, OU Z C, et al. The experimental and theoretical research on attitude of projectile obliquely penetrating into thin concrete target [J]. Acta Armamentarii, 2015, 36(S1): 248–254.
    [25]
    冯杰. 弹体非正侵彻混凝土薄靶姿态偏转数值模拟研究 [D]. 北京: 北京理工大学, 2016: 29–64.

    FENG J. Numerical simulation of attitude deflection of a projectile after non-ideal perforation of thin concrete target [D]. Beijing: Beijing Institute of Technology, 2016: 29–64.
    [26]
    刘世鑫. 非正侵彻混凝土薄靶弹体姿态变化的数值模拟研究 [D]. 北京: 北京理工大学, 2014: 30–40.

    LIU S X. Numerical simulation of attitude change of a projectile after oblique perforation of thin concrete target [D]. Beijing: Beijing Institute of Technology, 2014: 30–40.
    [27]
    李江涛. 弹体侵彻多层间隔混凝土靶的弹道特性研究 [D]. 南京: 南京理工大学, 2017: 36–58.

    LI J T. Study on characteristics of projectile penetrating multi-layer spaced concrete target [D]. Nanjing: Nanjing University of Science and Technology, 2017: 36–58.
    [28]
    张帅. 弹丸侵彻钢筋混凝土多层靶板的数值模拟分析 [D]. 南京: 南京理工大学, 2018: 20–85.

    ZHANG S. Numerical simulation analysis of projectile penetrating reinforced concrete multilayer target [D]. Nanjing: Nanjing University of Science and Technology, 2018: 20–85.
    [29]
    马兆芳. 动能弹斜侵彻有限厚混凝土靶体的弹道规律研究 [D]. 北京: 北京理工大学, 2016: 78–81.

    MA Z F. Investigation on trajectory regularity of kinetic energy projectile oblique penetration into concrete targets of finite thickness [D]. Beijing: Beijing Institute of Technology, 2016: 78–81.
    [30]
    吴普磊, 李鹏飞, 董平, 等. 攻角对弹体斜侵彻多层混凝土靶弹道偏转影响的数值模拟及试验验证 [J]. 火炸药学报, 2018, 41(2): 202–207. DOI: 10.14077/j.issn.1007-7812.2018.02.017.

    WU P L, LI P F, DONG P, et al. Numerical simulation and experimental verification on the influence of angle of attack on ballistic deflection of oblique penetrating multi-layer concrete targets for projectile [J]. Chinese Journal of Explosives & Propellants, 2018, 41(2): 202–207. DOI: 10.14077/j.issn.1007-7812.2018.02.017.
    [31]
    ANDERSON JR C E, BEHNER T, HOHLER V. Penetration efficiency as a function of target obliquity and projectile pitch [J]. Journal of Applied Mechanics, 2013, 80(3): 031801. DOI: 10.1115/1.4023342.
    [32]
    DONG H, LIU Z H, WU H J, et al. Study on penetration characteristics of high-speed elliptical cross-sectional projectiles into concrete [J]. International Journal of Impact Engineering, 2019, 132: 103311. DOI: 10.1016/j.ijimpeng.2019.05.025.
    [33]
    高旭东, 李庆明. 带攻角斜侵彻混凝土的弹道偏转分析 [J]. 兵工学报, 2014, 35(S2): 33–39.

    GAO X D, LI Q M. Trajectory analysis of projectile obliquely penetrating into concrete target at attack angle [J]. Acta Armamentarii, 2014, 35(S2): 33–39.
    [34]
    JENA P K, JAGTAP N, KUMAR K S, et al. Some experimental studies on angle effect in penetration [J]. International Journal of Impact Engineering, 2010, 37(5): 489–501. DOI: 10.1016/j.ijimpeng.2009.11.009.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(21)  / Tables(3)

    Article Metrics

    Article views (388) PDF downloads(120) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return