Volume 42 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
MA Yinliang, ZHANG Pan, CHENG Yuansheng, LIU Jun. Design of corner connection structures of box-type cabins subjected to internal blast loading[J]. Explosion And Shock Waves, 2022, 42(12): 125102. doi: 10.11883/bzycj-2021-0437
Citation: MA Yinliang, ZHANG Pan, CHENG Yuansheng, LIU Jun. Design of corner connection structures of box-type cabins subjected to internal blast loading[J]. Explosion And Shock Waves, 2022, 42(12): 125102. doi: 10.11883/bzycj-2021-0437

Design of corner connection structures of box-type cabins subjected to internal blast loading

doi: 10.11883/bzycj-2021-0437
  • Received Date: 2021-10-19
  • Rev Recd Date: 2022-06-19
  • Available Online: 2022-09-20
  • Publish Date: 2022-12-08
  • Semi-armor-piercing warhead is likely to penetrate into the inner space of warship to induce severe damage. Published research indicated that the corner part of ship cabin tended to fail first. In present study, the novel design of corner structure aims to improve the capability of explosion-proof of ship cabin. Motivated by this idea, six kinds of typical corner connection structures were designed using the concept of weakening converged shock wave, improving the structure stress and strain state, coordinating deformation and transforming failure modes. The LS-DYNA software was employed to investigate the dynamic response of cabin structure subjected internal blast loading. Lagrange shell element and solid element based on multi-material ALE algorithm are used to simulate steel structure and air region, respectively. The interaction between shock wave and structure was fulfilled using fluid-structure interaction algorithm. The accuracy of the numerical model proposed in present paper was validated by comparing the published experimental results. Main attention of present study focuses on the effects of corner connection structure on the maximum deflection, corner pressure and deformation/failure mode of cabin structure. It attempts to explore the failure mechanisms of cabin structure. Simulation results confirm that the corner position of cabin structure is susceptive to fail under internal blast loading. Compared with the original structure without corner connection, the existence of corner connection structure can obviously reduce the plastic deformation of cabin structure. To be specific, the corner connection in the flat-plate form could reduce the maximum deflection by up to 31.9% relative to the original structure. In addition, the application of the corner connection in the arc shape could decrease the equivalent plastic strain by about 60%. Moreover, the existence of corner connection structure could ameliorate the position of high plastic strain and the failure modes of cabin structure. In present study, the corner connections in flat-plate form, concave form and arc shape could effectively avoid the failure behavior of cabin corner.
  • loading
  • [1]
    虞德水, 于川, 张远平, 等. 半穿甲战斗部对模拟舰船结构毁伤效应试验研究 [C]//第四届全国爆炸力学实验技术学术会议论文集. 武夷山: 安徽省力学学会, 2006: 294–299.
    [2]
    张磊, 杜志鹏, 高鹏, 等. 水面舰艇舱内爆炸毁伤载荷研究进展 [J]. 中国科学: 物理学 力学 天文学, 2021, 51(12): 124605. DOI: 10.1360/SSPMA-2020-0378.

    ZHANG L, DU Z P, GAO P, et al. Research advance of damage load of surface ship cabin explosion [J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2021, 51(12): 124605. DOI: 10.1360/SSPMA-2020-0378.
    [3]
    GERETTO C, YUEN S C K, NURICK G N. An experimental study of the effects of degrees of confinement on the response of square mild steel plates subjected to blast loading [J]. International Journal of Impact Engineering, 2015, 79: 32–44. DOI: 10.1016/j.ijimpeng.2014.08.002.
    [4]
    郑成, 孔祥韶, 徐维铮, 等. 舱内爆炸载荷作用下加筋板动态响应试验研究 [J]. 中国造船, 2018, 59(2): 129–139. DOI: 10.3969/j.issn.1000-4882.2018.02.014.

    ZHENG C, KONG X S, XU W Z, et al. Experimental study on dynamic response of stiffened plates subjected to internal blast loads [J]. Shipbuilding of China, 2018, 59(2): 129–139. DOI: 10.3969/j.issn.1000-4882.2018.02.014.
    [5]
    李伟, 朱锡, 梅志远, 等. 战斗部舱内爆炸对舱室结构毁伤的实验研究 [J]. 舰船科学技术, 2009, 31(3): 34–37. DOI: 10.3404/j.issn.1672-7649.2009.03.005.

    LI W, ZHU X, MEI Z Y, et al. Experimental studies on damage effect of missile warhead on cabin’s structure under internal explosion [J]. Ship Science and Technology, 2009, 31(3): 34–37. DOI: 10.3404/j.issn.1672-7649.2009.03.005.
    [6]
    NURICK G N, GELMAN M E, MARSHALL N S. Tearing of blast loaded plates with clamped boundary conditions [J]. International Journal of Impact Engineering, 1996, 18(7/8): 803–827. DOI: 10.1016/S0734-743X(96)00026-7.
    [7]
    陈鹏宇, 侯海量, 金键, 等. 舰船舱内爆炸载荷简化载荷计算模型 [J]. 舰船科学技术, 2020, 42(17): 22–29. DOI: 10.3404/j.issn.1672-7649.2020.09.005.

    CHEN P Y, HOU H L, JIN J, et al. Simplified calculation model for explosion loading in ship cabin [J]. Ship Science and Technology, 2020, 42(17): 22–29. DOI: 10.3404/j.issn.1672-7649.2020.09.005.
    [8]
    侯海量, 朱锡, 梅志远. 舱内爆炸载荷及舱室板架结构的失效模式分析 [J]. 爆炸与冲击, 2007, 27(2): 151–158. DOI: 10.11883/1001-1455(2007)02-0151-08.

    HOU H L, ZHU X, MEI Z Y. Study on the blast load and failure mode of ship structure subject to internal explosion [J]. Explosion and Shock Waves, 2007, 27(2): 151–158. DOI: 10.11883/1001-1455(2007)02-0151-08.
    [9]
    侯海量, 朱锡, 李伟, 等. 舱内爆炸冲击载荷特性实验研究 [J]. 船舶力学, 2010, 14(8): 901–907. DOI: 10.3969/j.issn.1007-7294.2010.08.011.

    HOU H L, ZHU X, LI W, et al. Experimental studies on characteristics of blast loading when exploded inside ship cabin [J]. Journal of Ship Mechanics, 2010, 14(8): 901–907. DOI: 10.3969/j.issn.1007-7294.2010.08.011.
    [10]
    姚术健. 箱形结构内部爆炸等效缩比实验方法及破坏特性研究 [D]. 长沙: 国防科学技术大学, 2016: 125-156.

    YAO S J. Investigations on the scaling method and damage features of box-shaped structures under internal blast loading [D]. Changsha: National University of Defense Technology, 2016: 125–156.
    [11]
    王佳颖, 张世联, 武少波. 舱内爆炸载荷下双层横舱壁设计初探 [J]. 振动与冲击, 2011, 30(12): 209–215. DOI: 10.13465/j.cnki.jvs.2011.12.046.

    WANG J Y, ZHANG S L, WU S B. Preliminary design of double-bulkhead for a warship under cabin internal explosion [J]. Journal of Vibration and Shock, 2011, 30(12): 209–215. DOI: 10.13465/j.cnki.jvs.2011.12.046.
    [12]
    孔祥韶, 吴卫国, 李俊, 等. 角隅结构对舱内爆炸载荷影响的实验研究 [J]. 中国造船, 2012, 53(3): 40–50. DOI: 10.3969/j.issn.1000-4882.2012.03.007.

    KONG X S, WU W G, LI J, et al. Experimental research of influence of corner structure on blast loading under inner explosion [J]. Shipbuilding of China, 2012, 53(3): 40–50. DOI: 10.3969/j.issn.1000-4882.2012.03.007.
    [13]
    李营, 张磊, 杜志鹏, 等. 改变应力状态的抗内爆炸舱壁 [J]. 船舶力学, 2020, 24(9): 1151–1157. DOI: 10.3969/j.issn.1007-7294.2020.09.007.

    LI Y, ZHANG L, DU Z P, et al. Stress state changing bulkhead resistance to internal blast [J]. Journal of Ship Mechanics, 2020, 24(9): 1151–1157. DOI: 10.3969/j.issn.1007-7294.2020.09.007.
    [14]
    李营, 张磊, 杜志鹏, 等. 舱内爆炸作用下舰船舱壁失效机理与抗破损设计 [J]. 中国造船, 2019, 60(3): 27–34. DOI: 10.3969/j.issn.1000-4882.2019.03.003.

    LI Y, ZHANG L, DU Z P, et al. Failure mechanism and anti-damage design of bulkhead under internal blast [J]. Shipbuilding of China, 2019, 60(3): 27–34. DOI: 10.3969/j.issn.1000-4882.2019.03.003.
    [15]
    YAO S J, ZHANG D, LU F Y, et al. A combined experimental and numerical investigation on the scaling laws for steel box structures subjected to internal blast loading [J]. International Journal of Impact Engineering, 2017, 102: 36–46. DOI: 10.1016/j.ijimpeng.2016.12.003.
    [16]
    李旭东. 内爆准静态压力载荷对舱壁结构的毁伤效应研究 [D]. 太原: 中北大学, 2020: 101–102.

    LI X D. Study on the damage effect of internal explosive quasi-static pressure loads to bulkhead structures [D]. Taiyuan: North University of China, 2020: 101–102.
    [17]
    CHEN G C, CHENG Y S, ZHANG P, et al. Design and modelling of auxetic double arrowhead honeycomb core sandwich panels for performance improvement under air blast loading [J]. Journal of Sandwich Structures & Materials, 2021, 23(8): 3574–3605. DOI: 10.1177/1099636220935563.
    [18]
    李旭东, 尹建平, 赵鹏铎, 等. 固支钢板在爆炸与均布载荷耦合作用下的破坏 [J]. 兵器装备工程学报, 2021, 42(4): 26–30, 36. DOI: 10.11809/bqzbgcxb2021.04.005.

    LI X D, YIN J P, ZHAO P D, et al. Failure of clamped steel plates under local explosion and uniformly distributed load [J]. Journal of Ordnance Equipment Engineering, 2021, 42(4): 26–30, 36. DOI: 10.11809/bqzbgcxb2021.04.005.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Article Metrics

    Article views (375) PDF downloads(96) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return