Citation: | HUANG Chao, ZHANG Pan, ZENG Fan, XU Weizheng, WANG Jie, LIU Na. A method for adjusting and controlling underwater explosion shock wave[J]. Explosion And Shock Waves, 2022, 42(8): 083201. doi: 10.11883/bzycj-2021-0450 |
[1] |
金键, 朱锡, 侯海量, 等. 大型舰船在水下接触爆炸下的毁伤与防护研究综述 [J]. 爆炸与冲击, 2020, 40(11): 111401. DOI: 10.11883/bzycj-2020-0105.
JIN J, ZHU X, HOU H L, et al. Review on the damage and protection of large naval warships subjected to underwater contact explosions [J]. Explosion and Shock Waves, 2020, 40(11): 111401. DOI: 10.11883/bzycj-2020-0105.
|
[2] |
吴桐, 冯麟涵. 冲击下舰载机柜内部冲击环境分析 [J]. 兵器装备工程学报, 2018, 39(10): 58–62. DOI: 10.11809/bqzbgexb2018.10.012.
WU T, FENG L H. Analysis of shock environment in shipboard aircraft cabinet under shock [J]. Journal of Ordnance Equipment Engineering, 2018, 39(10): 58–62. DOI: 10.11809/bqzbgexb2018.10.012.
|
[3] |
王贡献, 褚德英, 张磊, 等. 舰船设备冲击试验机研究进展 [J]. 振动与冲击, 2007, 26(2): 152–159. DOI: 10.3969/j.issn.1000-3835.2007.02.037.
WANG G X, CHU D Y, ZHANG L, et al. Advances in shock test facilities for shipboard equipments [J]. Journal of Vibration and Shock, 2007, 26(2): 152–159. DOI: 10.3969/j.issn.1000-3835.2007.02.037.
|
[4] |
刁爱民, 王慰慈, 朱金晏. 摆锤式冲击台与浮动冲击平台冲击动力特性对比试验研究 [J]. 舰船科学技术, 2019, 41(12): 203–205. DOI: 10.3404/j.issn.1672-7649.2019.12.039.
DIAO A M, WANG W C, ZHU J Y. Experimental study on impact dynamics of pendulum impact table and floating impact platform [J]. Ship Science and Technology, 2019, 41(12): 203–205. DOI: 10.3404/j.issn.1672-7649.2019.12.039.
|
[5] |
陈学兵, 何斌, 陈辉, 等. 标准浮动冲击平台冲击环境试验及分析 [J]. 兵工学报, 2014, 35(S2): 8–12.
CHEN X B, HE B, CHEN H, et al. Test and analysis about the shock environment of standard floating shock platform [J]. Acta Armamentarii, 2014, 35(S2): 8–12.
|
[6] |
王军, 姚熊亮, 郭君. 中型浮动冲击平台结构设计研究 [J]. 振动与冲击, 2014, 33(7): 86–91. DOI: 10.13465/j.cnki.jvs.2014.07.015.
WANG J, YAO X L, GUO J. Structural design for a intermediate floating shock platform [J]. Journal of Vibration and Shock, 2014, 33(7): 86–91. DOI: 10.13465/j.cnki.jvs.2014.07.015.
|
[7] |
金辉, 高鑫, 奚慧魏, 等. 中型浮动冲击平台系统设计及冲击环境分析 [J]. 现代应用物理, 2019, 10(3): 66–71. DOI: 10.12061/j.issn.2095-6223.2019.031001.
JIN H, GAO X, XI H W, et al. Design and impact environment analysis of medium floating shock platform [J]. Modern Applied Physics, 2019, 10(3): 66–71. DOI: 10.12061/j.issn.2095-6223.2019.031001.
|
[8] |
张磊, 杜志鹏, 吴静波, 等. 200t级浮动冲击平台水下爆炸试验低频冲击响应数据分析 [J]. 中国舰船研究, 2018, 13(3): 60–65. DOI: 10.19693/j.issn.1673-3185.01149.
ZHANG L, DU Z P, WU J B, et al. Low-frequency shock response data analysis of underwater explosion test of 200-ton class floating shock platform [J]. Chinese Journal of Ship Research, 2018, 13(3): 60–65. DOI: 10.19693/j.issn.1673-3185.01149.
|
[9] |
张效慈. 水下爆炸试验相似准则 [J]. 船舶力学, 2007, 11(1): 108–118. DOI: 10.3969/j.issn.1007-7294.2007.01.014.
ZHANG X C. Similarity criteria for experiment of underwater explosion [J]. Journal of Ship Mechanics, 2007, 11(1): 108–118. DOI: 10.3969/j.issn.1007-7294.2007.01.014.
|
[10] |
GAO Y, WANG S S, ZHANG J X, et al. Effects of underwater explosion depth on shock wave overpressure and energy [J]. Physics of Fluids, 2022, 34(3): 037108. DOI: 10.1063/5.0081107.
|
[11] |
COLE R H. Underwater explosions [M]. New Jersey: Princeton University Press, 1948: 252–253.
|
[12] |
HAMMOND L. Underwater shock wave characteristics of cylindrical charges: DSTO-GD-0029 [R]. Australia: Aeronautical and Maritime Research Laboratory, 1995.
|
[13] |
STERNBERG H M. Underwater detonation of pentolite cylinders [J]. Physics of Fluids, 1987, 30(3): 761–769. DOI: 10.1063/1.866326.
|
[14] |
赵继波, 谭多望, 李金河, 等. TNT药柱水中爆炸近场压力轴向衰减规律 [J]. 爆炸与冲击, 2008, 28(6): 539–543. DOI: 10.11883/1001-1455(2008)06-0539-05.
ZHAO J B, TAN D W, LI J H, et al. Axial pressure damping of cylindrical TNT charges in the near underwater-explosion field [J]. Explosion and Shock Waves, 2008, 28(6): 539–543. DOI: 10.11883/1001-1455(2008)06-0539-05.
|
[15] |
李金河, 赵继波, 谭多望, 等. 不同起爆方式对含铝炸药水中爆炸近场冲击波压力的影响 [J]. 高压物理学报, 2012, 26(3): 289–293. DOI: 10.11858/gywlxb.2012.03.007.
LI J H, ZHAO J B, TAN D W, et al. Effect on the near field shock wave pressure of underwater explosion of aluminized explosive at different initiation modes [J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 289–293. DOI: 10.11858/gywlxb.2012.03.007.
|
[16] |
王长利, 周刚, 马坤, 等. 聚能装药水下爆炸冲击波载荷规律 [J]. 高压物理学报, 2017, 31(4): 453–461. DOI: 10.11858/gywlxb.2017.04.014.
WANG C L, ZHOU G, MA K, et al. Shockwave characteristics of shaped charge exploded underwater [J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 453–461. DOI: 10.11858/gywlxb.2017.04.014.
|
[17] |
ZHANG A M, WANG S P, HUANG C, et al. Influences of initial and boundary conditions on underwater explosion bubble dynamics [J]. European Journal of Mechanics-B/Fluids, 2013, 42: 69–91. DOI: 10.1016/j.euromechflu.2013.06.008.
|
[18] |
ZHANG A M, YANG W S, HUANG C, et al. Numerical simulation of column charge underwater explosion based on SPH and BEM combination [J]. Computers & Fluids, 2013, 71: 169–178. DOI: 10.1016/j.compfluid.2012.10.012.
|
[19] |
黄超, 汪斌, 刘仓理, 等. 非球形水下爆炸气泡坍塌机制 [J]. 高压物理学报, 2012, 26(5): 501–507. DOI: 10.11858/gywlxb.2012.05.004.
HUANG C, WANG B, LIU C L, et al. On the mechanism of non-spherical underwater explosion bubble collapse [J]. Chinese Journal of High Pressure Physics, 2012, 26(5): 501–507. DOI: 10.11858/gywlxb.2012.05.004.
|
[20] |
ZHANG Z F, WANG C, WANG L K, et al. Underwater explosion of cylindrical charge near plates: analysis of pressure characteristics and cavitation effects [J]. International Journal of Impact Engineering, 2018, 121: 91–105. DOI: 10.1016/j.ijimpeng.2018.06.009.
|
[21] |
HUANG C, LIU M B, WANG B, et al. Underwater explosion of slender explosives: directional effects of shock waves and structure responses [J]. International Journal of Impact Engineering, 2019, 130: 266–280. DOI: 10.1016/j.ijimpeng.2019.04.018.
|
[22] |
徐维铮, 黄超, 张磐, 等. 锥形长药柱水下爆炸冲击波参数计算方法 [J]. 爆炸与冲击, 2022, 42(1): 014203. DOI: 10.11883/bzycj-2021-0095.
XU W Z, HUANG C, ZHANG P, et al. A method for calculating underwater explosion shock wave parameters of slender cone-shaped charges [J]. Explosion and Shock Waves, 2022, 42(1): 014203. DOI: 10.11883/bzycj-2021-0095.
|
[23] |
孙承纬, 卫玉章, 周之奎. 应用爆轰物理 [M]. 北京: 国防工业出版社, 2000: 228–230.
SUN C W, WEI Y Z, ZHOU Z K. Applied detonation physics [M]. Beijing: National Defense Industry Press, 2000: 228–230.
|
[24] |
曾令玉, 蔡尚, 王诗平. 水下爆炸气泡对舰船冲击环境的影响 [J]. 中国舰船研究, 2018, 13(3): 66–71. DOI: 10.19693/j.issn.1673-3185.01033.
ZENG L Y, CAI S, WANG S P. Effects of underwater explosion bubble on shock environment of warship [J]. Chinese Journal of Ship Research, 2018, 13(3): 66–71. DOI: 10.19693/j.issn.1673-3185.01033.
|
[25] |
王志凯, 周鹏, 孙波, 等. 气泡及其破碎兴波对浮动冲击平台影响探究 [J]. 爆炸与冲击, 2019, 39(9): 093201. DOI: 10.11883/bzycj-2018-0212.
WANG Z K, ZHOU P, SUN B, et al. Influence of bubbles and breaking waves on floating shock platform [J]. Explosion and Shock Waves, 2019, 39(9): 093201. DOI: 10.11883/bzycj-2018-0212.
|
[26] |
TIAN Z L, LIU Y L, ZHANG A M, et al. Jet development and impact load of underwater explosion bubble on solid wall [J]. Applied Ocean Research, 2020, 95: 102013. DOI: 10.1016/j.apor.2019.102013.
|
[27] |
黄超, 汪斌, 姚熊亮, 等. 实验室尺度水下爆炸气泡实验方法 [J]. 传感器与微系统, 2011, 30(12): 75–77, 81. DOI: 10.3969/j.issn.1000-9787.2011.12.023.
HUANG C, WANG B, YAO X L, et al. Laboratory-scale underwater explosion bubble experiment method [J]. Transducer and Microsystem Technologies, 2011, 30(12): 75–77, 81. DOI: 10.3969/j.issn.1000-9787.2011.12.023.
|