Volume 42 Issue 12
Dec.  2022
Turn off MathJax
Article Contents
ZHANG Kai, DU Saifeng, CHEN Hao, GUO Jin, WANG Jingui, HONG Yidu. Experiments on the effects of venting and nitrogen inerting on hydrogen-air explosions[J]. Explosion And Shock Waves, 2022, 42(12): 125402. doi: 10.11883/bzycj-2021-0459
Citation: ZHANG Kai, DU Saifeng, CHEN Hao, GUO Jin, WANG Jingui, HONG Yidu. Experiments on the effects of venting and nitrogen inerting on hydrogen-air explosions[J]. Explosion And Shock Waves, 2022, 42(12): 125402. doi: 10.11883/bzycj-2021-0459

Experiments on the effects of venting and nitrogen inerting on hydrogen-air explosions

doi: 10.11883/bzycj-2021-0459
  • Received Date: 2021-11-08
  • Rev Recd Date: 2022-01-12
  • Available Online: 2022-11-14
  • Publish Date: 2022-12-08
  • Explosion venting and inerting are two commonly used explosion protective measures in hydrogen-based industries, both of them are effective in reducing the maximum explosion overpressure when used alone. However, the coupling effects of venting and inerting on hydrogen deflagrations have not been well understood. To this end, experiments were carried out in a 1 m high top-vented vessel with a cross-section area of 0.3 m×0.3 m to investigate the effects of nitrogen volume fraction (φ) in the range of 0 to 50% by volume on vented hydrogen-air explosions with a fixed equivalence ratio. The premixed hydrogen-nitrogen-air mixtures obtained according to Dolton’s law of partial pressure were ignited in the center of the vented container by an electric spark with an energy of about 500 mJ. A 0.75-m long transparent window was installed in the center of the vented container, through which the flame images in the container were recorded by a high-speed camera at 2 000 frames per second. The pressure-time histories within and outside the vented container were measured by four piezoresistive pressure sensors with a measuring range of 0–150 kPa. The experimental results reveal that φ significantly affects the vented deflagration of hydrogen-air mixtures. The pressure peak owing to the external explosion dominates the internal pressure-time histories when φ≤40% and that resulting from the rupture of vent cover becomes dominant for higher values of φ. Under the current experimental conditions, Helmholtz-type oscillations with a frequency decreasing with φ are always observed, and acoustic oscillations appear in the tests only for φ=25%, 30%. The maximum internal explosion overpressures (pmax) near the vent, at the center of the vessel, and near the bottom of the vessel decrease with increasing φ. Moreover, the highest overall pmax is obtained always near the bottom of the vessel. However, the difference of pmax between the three measuring points is negligible when φ is larger than 40%. The maximum external explosion overpressure decreases with increasing φ. In addition, significant effects of the external explosion on the internal pressure-time histories are observed in all tests, regardless of its explosion overpressure.
  • loading
  • [1]
    郑远攀, 景国勋, 张亚丽. CH4/CO2混合气体爆燃特性研究进展 [J]. 爆炸与冲击, 2012, 32(2): 203–210. DOI: 10.11883/1001-1455(2012)02-0203-08.

    ZHENG Y P, JING G X, ZHANG Y L. A review of explosion characteristics of methane and carbon dioxide gas mixtures [J]. Explosion and Shock Waves, 2012, 32(2): 203–210. DOI: 10.11883/1001-1455(2012)02-0203-08.
    [2]
    崔益虎, 蒋军成, 喻源, 等. 受限空间内气体爆炸惰化泄爆实验研究 [J]. 中国矿业大学学报, 2014, 43(3): 421–425. DOI: 10.13247/j.cnki.jcumt.000127.

    CUI Y H, JIANG J C, YU Y, et al. Experimental study of the influence of inert gas addition on gas explosion release in confined space [J]. Journal of China University of Mining & Technology, 2014, 43(3): 421–425. DOI: 10.13247/j.cnki.jcumt.000127.
    [3]
    CHOW S K, CLEAVER R P, FAIRWEATHER M, et al. An experimental study of vented explosions in a 3∶ 1 aspect ratio cylindrical vessel [J]. Process Safety and Environmental Protection, 2000, 78(6): 425–433. DOI: 10.1205/095758200530970.
    [4]
    FERRARA G, DI BENEDETTO A, SALZANO E, et al. CFD analysis of gas explosions vented through relief pipes [J]. Journal of Hazardous Materials, 2006, 137(2): 654–665. DOI: 10.1016/j.jhazmat.2006.03.037.
    [5]
    BAUWENS C R, CHAFFEE J, DOROFEEV S. Effect of ignition location, vent size, and obstacles on vented explosion overpressures in propane-air mixtures [J]. Combustion Science and Technology, 2010, 182(11/12): 1915–1932. DOI: 10.1080/00102202.2010.497415.
    [6]
    GUO J, SUN X X, RUI S C, et al. Effect of ignition position on vented hydrogen-air explosions [J]. International Journal of Hydrogen Energy, 2015, 40(45): 15780–15788. DOI: 10.1016/j.ijhydene.2015.09.038.
    [7]
    曹勇, 郭进, 胡坤伦, 等. 点火位置对氢气-空气预混气体泄爆过程的影响 [J]. 爆炸与冲击, 2016, 36(6): 847–852. DOI: 10.11883/1001-1455(2016)06-0847-06.

    CAO Y, GUO J, HU K L, et al. Effect of ignition locations on vented explosion of premixed hydrogen-air mixtures [J]. Explosion and Shock Waves, 2016, 36(6): 847–852. DOI: 10.11883/1001-1455(2016)06-0847-06.
    [8]
    MCCANN D P J, THOMAS G O, EDWARDS D H. Gasdynamics of vented explosions (Ⅰ): experimental studies [J]. Combustion and Flame, 1985, 59(3): 233–250. DOI: 10.1016/0010-2180(85)90128-2.
    [9]
    COOPER M G, FAIRWEATHER M, TITE J P. On the mechanisms of pressure generation in vented explosions [J]. Combustion and Flame, 1986, 65(1): 1–14. DOI: 10.1016/0010-2180(86)90067-2.
    [10]
    JIANG X H, FAN B C, YE J F, et al. Experimental investigations on the external pressure during venting [J]. Journal of Loss Prevention in the Process Industries, 2005, 18(1): 21–26. DOI: 10.1016/j.jlp.2004.09.002.
    [11]
    PROUST C, LEPRETTE E. The dynamics of vented gas explosions [J]. Process Safety Progress, 2010, 29(3): 231–235. DOI: 10.1002/prs.10368.
    [12]
    钱海林, 王志荣, 蒋军成. N2/CO2混合气体对甲烷爆炸的影响 [J]. 爆炸与冲击, 2012, 32(4): 445–448. DOI: 10.11883/1001-1455(2012)04-0445-04.

    QIAN H L, WANG Z R, JIANG J C. Influence of N2/CO2 mixture on methane explosion [J]. Explosion and Shock Waves, 2012, 32(4): 445–448. DOI: 10.11883/1001-1455(2012)04-0445-04.
    [13]
    SHEN X B, ZHANG N N, SHI X M, et al. Experimental studies on pressure dynamics of C2H4/N2O mixtures explosion with dilution [J]. Applied Thermal Engineering, 2019, 147: 74–80. DOI: 10.1016/j.applthermaleng.2018.10.053.
    [14]
    WEI H Q, XU Z L, ZHOU L, et al. Effect of hydrogen-air mixture diluted with argon/nitrogen/carbon dioxide on combustion processes in confined space [J]. International Journal of Hydrogen Energy, 2018, 43(31): 14798–14805. DOI: 10.1016/j.ijhydene.2018.06.038.
    [15]
    ZHANG Q W, YU Y, LI Y H, et al. Coupling effects of venting and inerting on explosions in interconnected vessels [J]. Journal of Loss Prevention in the Process Industries, 2020, 65: 104132. DOI: 10.1016/j.jlp.2020.104132.
    [16]
    HOLBORN P G, BATTERSBY P, INGRAM J M, et al. Modelling the mitigation of lean hydrogen deflagrations in a vented cylindrical rig with water fog [J]. International Journal of Hydrogen Energy, 2012, 37(20): 15406–15422. DOI: 10.1016/j.ijhydene.2012.07.131.
    [17]
    HOLBORN P G, BATTERSBY P N, INGRAM J M, et al. Modelling the mitigation of a hydrogen deflagration in a nuclear waste silo ullage with water fog [J]. Process Safety and Environmental Protection, 2013, 91(6): 476–482. DOI: 10.1016/j.psep.2012.11.001.
    [18]
    BATTERSBY P N, AVERILL A F, INGRAM J M, et al. Suppression of hydrogen-oxygen-nitrogen explosions by fine water mist (2): mitigation of vented deflagrations [J]. International Journal of Hydrogen Energy, 2012, 37(24): 19258–19267. DOI: 10.1016/j.ijhydene.2012.10.029.
    [19]
    HOLBORN P G, BATTERSBY P, INGRAM J M, et al. Modelling the mitigation of hydrogen deflagrations in a vented cylindrical rig with water fog and nitrogen dilution [J]. International Journal of Hydrogen Energy, 2013, 38(8): 3471–3487. DOI: 10.1016/j.ijhydene.2012.12.134.
    [20]
    WEN X P, WANG M M, SU T F, et al. Suppression effects of ultrafine water mist on hydrogen/methane mixture explosion in an obstructed chamber [J]. International Journal of Hydrogen Energy, 2019, 44(60): 32332–32342. DOI: 10.1016/j.ijhydene.2019.10.110.
    [21]
    PEI B, YU M G, CHEN L W, et al. Experimental study on the synergistic inhibition effect of nitrogen and ultrafine water mist on gas explosion in a vented duct [J]. Journal of Loss Prevention in the Process Industries, 2016, 40: 546–553. DOI: 10.1016/j.jlp.2016.02.005.
    [22]
    INGRAM J M, AVERILL A F, BATTERSBY P N, et al. Suppression of hydrogen-oxygen-nitrogen explosions by fine water mist (1): burning velocity [J]. International Journal of Hydrogen Energy, 2012, 37(24): 19250–19257. DOI: 10.1016/j.ijhydene.2012.09.092.
    [23]
    刘洋, 李展, 方秦, 等. 惰性气体和水蒸气对长直空间燃气爆炸超压及其振荡的抑制作用 [J]. 高压物理学报, 2021, 35(5): 055201. DOI: 10.11858/gywlxb.20200654.

    LIU Y, LI Z, FANG Q, et al. Inert gas and water vapor suppressing overpressure and its oscillation of gas explosion in long straight space [J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 055201. DOI: 10.11858/gywlxb.20200654.
    [24]
    张迎新, 吴强, 刘传海, 等. 惰性气体N2/CO2抑制瓦斯爆炸实验研究 [J]. 爆炸与冲击, 2017, 37(5): 906–912. DOI: 10.11883/1001-1455(2017)05-0906-07.

    ZHANG Y X, WU Q, LIU C H, et al. Experimental study on coal mine gas explosion suppression with inert gas N2/CO2 [J]. Explosion and Shock Waves, 2017, 37(5): 906–912. DOI: 10.11883/1001-1455(2017)05-0906-07.
    [25]
    LU C, WANG H B, PAN R K, et al. Preventing the propagation of gas explosion in ducts using spurted nitrogen [J]. Process Safety and Environmental Protection, 2019, 123: 11–23. DOI: 10.1016/j.psep.2018.12.028.
    [26]
    LI G C, WANG X S, XU H L, et al. Experimental study on explosion characteristics of ethanol gasoline-air mixture and its mitigation using heptafluoropropane [J]. Journal of Hazardous Materials, 2019, 378: 120711. DOI: 10.1016/j.jhazmat.2019.05.104.
    [27]
    ZHENG L G, LI G, WANG Y L, et al. Effect of blockage ratios on the characteristics of methane/air explosion suppressed by BC powder [J]. Journal of Hazardous Materials, 2018, 355: 25–33. DOI: 10.1016/j.jhazmat.2018.04.070.
    [28]
    郑立刚, 王亚磊, 于水军, 等. NaHCO3抑制瓦斯爆炸火焰与压力的耦合分析 [J]. 化工学报, 2018, 69(9): 4129–4136. DOI: 10.11949/j.issn.0438-1157.20180433.

    ZHENG L G, WANG Y L, YU S J, et al. Coupled relationship between flame and overpressure of gas explosion inhibited by NaHCO3 [J]. CIESC Journal, 2018, 69(9): 4129–4136. DOI: 10.11949/j.issn.0438-1157.20180433.
    [29]
    GUO J, WANG C J, LIU X Y. Experimental study on duct-vented explosion of hydrogen-air mixtures in a wide range of equivalence ratio [J]. Industrial & Engineering Chemistry Research, 2016, 55(35): 9518–9523. DOI: 10.1021/acs.iecr.6b02029.
    [30]
    LI J L, WANG X B, GUO J, et al. Effect of concentration and ignition position on vented methane-air explosions [J]. Journal of Loss Prevention in the Process Industries, 2020, 68: 104334. DOI: 10.1016/j.jlp.2020.104334.
    [31]
    SOLBERG D M, PAPPAS J A, SKRAMSTAD E. Observations of flame instabilities in large scale vented gas explosions [J]. Symposium (International) on Combustion, 1981, 18(1): 1607–1614. DOI: 10.1016/S0082-0784(81)80164-6.
    [32]
    LI Q Q, HU E J, CHENG Y, et al. Measurements of laminar flame speeds and flame instability analysis of 2-methyl-1-butanol-air mixtures [J]. Fuel, 2013, 112: 263–271. DOI: 10.1016/j.fuel.2013.05.039.
    [33]
    ZENG W, LIU J, MA H A, et al. Experimental study on the flame propagation and laminar combustion characteristics of landfill gas [J]. Energy, 2018, 158: 437–448. DOI: 10.1016/j.energy.2018.06.062.
    [34]
    郑立刚, 朱小超, 于水军, 等. 浓度和点火位置对氢气-空气预混气爆燃特性影响 [J]. 化工学报, 2019, 70(1): 408–416. DOI: 10.11949/j.issn.0438-1157.20180726.

    ZHENG L G, ZHU X C, YU S J, et al. Effect of concentration and ignition position on characteristics of premixed hydrogen-air deflagration [J]. CIESC Journal, 2019, 70(1): 408–416. DOI: 10.11949/j.issn.0438-1157.20180726.
    [35]
    YANG J, GUO J, WANG C H, et al. Effect of equivalence ratio on hydrogen–methane–air deflagration in a duct with an open end [J]. Fuel, 2020, 280: 118694. DOI: 10.1016/j.fuel.2020.118694.
    [36]
    BAO Q, FANG Q, ZHANG Y D, et al. Effects of gas concentration and venting pressure on overpressure transients during vented explosion of methane-air mixtures [J]. Fuel, 2016, 175: 40–48. DOI: 10.1016/j.fuel.2016.01.084.
    [37]
    ZHANG C, WEN J, SHEN X B, et al. Experimental study of hydrogen/air premixed flame propagation in a closed channel with inhibitions for safety consideration [J]. International Journal of Hydrogen Energy, 2019, 44(40): 22654–22660. DOI: 10.1016/j.ijhydene.2019.04.032.
    [38]
    KUZNETSOV M, FRIEDRICH A, STERN G, et al. Medium-scale experiments on vented hydrogen deflagration [J]. Journal of Loss Prevention in the Process Industries, 2015, 36: 416–428. DOI: 10.1016/j.jlp.2015.04.013.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views (278) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return