Citation: | LI Yinglei, LIU Mingtao, CHEN Yan, ZHANG Shiwen, TANG Tiegang. Technologies for loading and diagnosis of expanding cylinder experiments with linearly-initiated explosives[J]. Explosion And Shock Waves, 2022, 42(12): 124101. doi: 10.11883/bzycj-2021-0484 |
[1] |
GURNEY R W. The initial velocity of fragments from bombs: shells and grenades: Report No. 405 [R]. Aberdeen, UK: Army Ballistic Research Laboratory, 1943.
|
[2] |
MOTT N F. Fragmentation of shell cases [J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1947, 189(1018): 300–308. DOI: 10.1098/rspa.1947.0042.
|
[3] |
GRADY D E, OLSEN M L. A statistics and energy based theory of dynamic fragmentation [J]. International Journal of Impact Engineering, 2003, 29(1): 293–306. DOI: 10.1016/j.ijimpeng.2003.09.026.
|
[4] |
HOPSON M V, SCOTT C M, PATEL R. Computational comparisons of homogeneous and statistical descriptions of AerMet100 steel subjected to high strain rate loading [J]. International Journal of Impact Engineering, 2011, 38(6): 451–455. DOI: 10.1016/j.ijimpeng.2010.10.016.
|
[5] |
ZHOU F, MOLINARI J F, RAMESH K T. An elastic-visco-plastic analysis of ductile expanding ring [J]. International Journal of Impact Engineering, 2006, 33(1): 880–891. DOI: 10.1016/j.ijimpeng.2006.09.070.
|
[6] |
郑宇轩, 陈磊, 胡时胜, 等. 韧性材料冲击拉伸碎裂中的碎片尺寸分布规律 [J]. 力学学报, 2013, 45(4): 580–587. DOI: 10.6052/0459-1879-12-338.
ZHENG Y X, CHEN L, HU S S, et al. Characteristics of fragment size distribution of ductile materials fragmentized under high strainrate tension [J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 580–587. DOI: 10.6052/0459-1879-12-338.
|
[7] |
ZHANG H, RAVI-CHANDAR K. On the dynamics of localization and fragmentation: Ⅳ. expansion of Al 6061-O tubes [J]. International Journal of Fracture, 2010, 163(1/2): 41–65. DOI: 10.1007/s10704-009-9441-5.
|
[8] |
LOVINGER Z, RITTEL D, ROSENBERG Z. An experimental study on spontaneous adiabatic shear band formation in electro-magnetically collapsing cylinders [J]. Journal of the Mechanics and Physics of Solids, 2015, 79: 134–156. DOI: 10.1016/j.jmps.2015.04.007.
|
[9] |
TAYLOR G I. The scientific papers of Sir Geoffrey Ingram Taylor: Volume Ⅲ: aerodynamics and the mechanics of projectiles and explosions [M]. Cambridge, UK: Cambridge University Press, 1963: 387–393.
|
[10] |
HOGGATT C R, RECHT R F. Fracture behavior of tubular bombs [J]. Journal of Applied Physics, 1968, 39(3): 1856–1862. DOI: 10.1063/1.1656442.
|
[11] |
胡八一, 董庆东, 韩长生, 等. 内部爆轰加载下的钢管膨胀断裂研究 [J]. 爆炸与冲击, 1993, 13(1): 49–54.
HU B Y, DONG Q D, HAN C S, et al. Studies of expansion and fracture of explosive-filled steel cylinders [J]. Explosion and Shock Waves, 1993, 13(1): 49–54.
|
[12] |
BEETLE J C, RINNOVATORE J V, CORRIE J D. Fracture morphology of explosively loaded steel cylinders [C]//MARSZALEK D S. Proceedings of the Fourth Annual Scanning Electron Microscope Symposium and Workshop on Forensic Applications of the Scanning Electron Microscope. Chicago, Illnois, USA, 1971: 137–144.
|
[13] |
李永池, 李大红, 魏志刚, 等. 内爆炸载荷下圆管变形、损伤和破坏规律的研究 [J]. 力学学报, 1999, 31(4): 442–449. DOI: 10.6052/0459-1879-1999-4-1995-052.
LI Y C, LI D H, WEI Z G, et al. Research on the deformation, damage and fracture rules of circular tubes under inside-explosive loading [J]. Acta Mechanica Sinica, 1999, 31(4): 442–449. DOI: 10.6052/0459-1879-1999-4-1995-052.
|
[14] |
张世文, 刘仓理, 于锦泉. 微缺陷对圆管膨胀断裂的影响 [J]. 爆炸与冲击, 2008, 28(4): 316–323. DOI: 10.11883/1001-1455(2008)04-0316-08.
ZHANG S W, LIU C L, YU J Q. Influences of microdefects on expanding fracture of a metal cylinder [J]. Explosion and Shock Waves, 2008, 28(4): 316–323. DOI: 10.11883/1001-1455(2008)04-0316-08.
|
[15] |
GOTO D M, BECKER R, ORZECHOWSKI T J, et al. Investigation of the fracture and fragmentation of explosively driven rings and cylinders [J]. International Journal of Impact Engineering, 2008, 35(12): 1547–1556. DOI: 10.1016/j.ijimpeng.2008.07.081.
|
[16] |
任国武, 郭昭亮, 张世文, 等. 金属柱壳膨胀断裂的实验与数值模拟 [J]. 爆炸与冲击, 2015, 35(6): 895–900. DOI: 10.11883/1001-1455(2015)06-0895-06.
REN G W, GUO Z L, ZHANG S W, et al. Experiment and numerical simulation on expansion deformation and fracture of cylindrical shell [J]. Explosion and Shock Waves, 2015, 35(6): 895–900. DOI: 10.11883/1001-1455(2015)06-0895-06.
|
[17] |
LIU M T, REN G W, FAN C, et al. Experimental and numerical studies on the expanding fracture behavior of an explosively driven 1045 steel cylinder [J]. International Journal of Impact Engineering, 2017, 109(1): 240–252. DOI: 10.1016/j.ijimpeng.2017.07.008.
|
[18] |
HIROE T, FUJIWARA K, HATA H, et al. Deformation and fragmentation behaviour of exploded metal cylinders and the effects of wall materials, configuration, explosive energy and initiated locations [J]. International Journal of Impact Engineering, 2008, 35(12): 1578–1586. DOI: 10.1016/j.ijimpeng.2008.07.002.
|
[19] |
张振涛, 郭昭亮, 蒲国红, 等. 爆炸丝线起爆装置研制及应用 [J]. 强激光与粒子束, 2014, 26(3): 035004. DOI: 10.3788/HPLPB201426.035004.
ZHANG Z T, GUO Z L, PU G H, et al. Development and application of exploding wire initiation system [J]. High Power Laser and Particle Beams, 2014, 26(3): 035004. DOI: 10.3788/HPLPB201426.035004.
|
[20] |
SINGH M, SUNEJA H R, BOLA M S, et al. Dynamic tensile deformation and fracture of metal cylinders at high strain rates [J]. International Journal of Impact Engineering, 2002, 27(9): 939–954. DOI: 10.1016/S0734-743X(02)00002-7.
|
[21] |
FROST D L, LOISEAU J, GOROSHIN S, et al. Fracture of explosively compacted aluminum particles in a cylinder [J]. Bulletin of the American Physical Society, 2017, 1793(1): 120019. DOI: 10.1063/1.4971701.
|
[22] |
金山, 汤铁钢, 孙学林, 等. 不同热处理条件下45钢柱壳的动态性能 [J]. 爆炸与冲击, 2006, 26(5): 423–428. DOI: 10.11883/1001-1455(2006)05-0423-06.
JIN S, TANG T G, SUN X L, et al. Dynamic characteristics of 45 steel cylinder shell by different heat treatment conditions [J]. Explosion and Shock Waves, 2006, 26(5): 423–428. DOI: 10.11883/1001-1455(2006)05-0423-06.
|
[23] |
孙承纬, 卫玉章, 周之奎. 应用爆轰物理 [M]. 北京: 国防工业出版社, 2000: 172–173.
|
[24] |
李英雷, 胡时胜, 李英华. A95陶瓷材料的动态压缩测试研究 [J]. 爆炸与冲击, 2004, 24(3): 233–239.
LI Y L, HU S S, LI Y H. Research on dynamic behaviors of A95 ceramics under compression [J]. Explosion and Shock Waves, 2004, 24(3): 233–239.
|
[25] |
刘宏月, 梁大开, 韩晓林, 等. 基于模量/应变波耦合特性的FBG碳纤维增强塑料复合材料拉伸断裂监测 [J]. 复合材料学报, 2014, 31(1): 26–32. DOI: 10.3969/j.issn.1000-3851.2014.01.004.
LIU H Y, LIANG D K, HAN X L, et al. FBG fracture monitoring for CFRP based on coupling characteristic of modulus/strain wave [J]. Acta Materiae Compositae Sinica, 2014, 31(1): 26–32. DOI: 10.3969/j.issn.1000-3851.2014.01.004.
|