Citation: | LIU Hao, BAI Zhen, LI Zhiqiang, LI Shiqiang. Maximum stiffness topology optimization and dynamic response of a lightweight sandwich arch under impact load[J]. Explosion And Shock Waves, 2022, 42(6): 063303. doi: 10.11883/bzycj-2021-0512 |
[1] |
RIZOV V, SHIPSHA A, ZENKERT D. Indentation study of foam core sandwich composite panels [J]. Composite Structures, 2005, 69(1): 95–102. DOI: 10.1016/j.compstruct.2004.05.013.
|
[2] |
HOU W H, ZHU F, LU G X, et al. Ballistic impact experiments of metallic sandwich panels with aluminium foam core [J]. International Journal of Impact Engineering, 2010, 37(10): 1045–1055. DOI: 10.1016/j.ijimpeng.2010.03.006.
|
[3] |
ZHU F, WANG Z H, LU G X, et al. Some theoretical considerations on the dynamic response of sandwich structures under impulsive loading [J]. International Journal of Impact Engineering, 2010, 37(6): 625–637. DOI: 10.1016/j.ijimpeng.2009.11.003.
|
[4] |
CHANG W S, VENTSEL E, KRAUTHAMMER T, et al. Bending behavior of corrugated-core sandwich plates [J]. Composite Structures, 2005, 70(1): 81–89. DOI: 10.1016/j.compstruct.2004.08.014.
|
[5] |
SHU C F, ZHAO S Y, HOU S J. Crashworthiness analysis of two-layered corrugated sandwich panels under crushing loading [J]. Thin-Walled Structures, 2018, 133: 42–51. DOI: 10.1016/j.tws.2018.09.008.
|
[6] |
ZHU F, ZHAO L M, LU G X, et al. A numerical simulation of the blast impact of square metallic sandwich panels [J]. International Journal of Impact Engineering, 2009, 36(5): 687–699. DOI: 10.1016/j.ijimpeng.2008.12.004.
|
[7] |
余同希, 朱凌, 许骏. 结构冲击动力学进展(2010—2020) [J]. 爆炸与冲击, 2021, 41(12): 121401. DOI: 10.11883/bzycj-2021-0113.
YU T X, ZHU L, XU J. Progress in structural impact dynamics during 2010—2020 [J]. Explosion and Shock Waves, 2021, 41(12): 121401. DOI: 10.11883/bzycj-2021-0113.
|
[8] |
王海任, 李世强, 刘志芳, 等. 爆炸载荷下双向梯度仿生夹芯圆板的力学行为 [J]. 爆炸与冲击, 2021, 41(4): 043201. DOI: 10.11883/bzycj-2020-0132.
WANG H R, LI S Q, LIU Z F, et al. Mechanical behaviors of bi-directional gradient bio-inspired circular sandwich plates under blast loading [J]. Explosion and Shock Waves, 2021, 41(4): 043201. DOI: 10.11883/bzycj-2020-0132.
|
[9] |
彭克锋, 崔世堂, 潘昊, 等. 冲击载荷作用下柱壳链中的弹性波传播简化模型及其解析解 [J]. 爆炸与冲击, 2021, 41(1): 011403. DOI: 10.11883/bzycj-2020-0246.
PENG K F, CUI S T, PAN H, et al. Simplified model of elastic wave propagation in cylindrical shell chain under impact load and its analytical solution [J]. Explosion and Shock Waves, 2021, 41(1): 011403. DOI: 10.11883/bzycj-2020-0246.
|
[10] |
曾祥, 刘彦, 许泽建, 等. 爆炸载荷作用下玻璃钢/硬质聚氨酯泡沫夹层结构抗冲击性能实验研究 [J]. 北京理工大学学报, 2021, 41(11): 1145–1153. DOI: 10.15918/j.tbit1001-0645.2021.036.
ZENG X, LIU Y, XU Z J, et al. Experimental study on impact resistance of glass fiber reinforced plastic/rigid polyurethane foam sandwich structures under air blast loading [J]. Transactions of Beijing Institute of Technology, 2021, 41(11): 1145–1153. DOI: 10.15918/j.tbit1001-0645.2021.036.
|
[11] |
邢运, 杨嘉陵. 动物进化的抗冲击策略及其仿生机理研究 [J]. 力学进展, 2021, 51(2): 295–341. DOI: 10.6052/1000-0992-20-027.
XING Y, YANG J L. Research progress of impact-resistance strategies and biomi-metic mechanism in animal evolution [J]. Advances in Mechanics, 2021, 51(2): 295–341. DOI: 10.6052/1000-0992-20-027.
|
[12] |
李肖成, 徐绯, 杨磊峰, 等. 薄板在冲击载荷下线弹性理想塑性响应的相似性研究 [J]. 爆炸与冲击, 2021, 41(11): 113103. DOI: 10.11883/bzycj-2020-0374.
LI X C, XU F, YANG L F, et al. Study on the similarity of elasticity and ideal plasticity response of thin plate under impact loading [J]. Explosion and Shock Waves, 2021, 41(11): 113103. DOI: 10.11883/bzycj-2020-0374.
|
[13] |
NIKBAKT S, KAMARIAN S, SHAKERI M. A review on optimization of composite structures Part I: laminated composites [J]. Composite Structures, 2018, 195: 158–185. DOI: 10.1016/j.compstruct.2018.03.063.
|
[14] |
NIKBAKHT S, KAMARIAN S, SHAKERI M. A review on optimization of composite structures Part II: functionally graded materials [J]. Composite Structures, 2019, 214: 83–102. DOI: 10.1016/j.compstruct.2019.01.105.
|
[15] |
ROZVANY G I N, BENDSOE M P, KIRSCH U. Layout optimization of structures [J]. Applied Mechanics Reviews, 1995, 48(2): 41–119. DOI: 10.1115/1.3005097.
|
[16] |
RIETZ A. Sufficiency of a finite exponent in SIMP (power law) methods [J]. Structural and Multidisciplinary Optimization, 2001, 21(2): 159–163. DOI: 10.1007/s001580050180.
|
[17] |
BENDSØE M P, KIKUCHI N. Generating optimal topologies in structural design using a homogenization method [J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2): 197–224. DOI: 10.1016/0045-7825(88)90086-2.
|
[18] |
SUZUKI K, KIKUCHI N. A homogenization method for shape and topology optimization [J]. Computer Methods in Applied Mechanics and Engineering, 1991, 93(3): 291–318. DOI: 10.1016/0045-7825(91)90245-2.
|
[19] |
XIE Y M, STEVEN G P. A simple evolutionary procedure for structural optimization [J]. Computers & Structures, 1993, 49(5): 885–896. DOI: 10.1016/0045-7949(93)90035-C.
|
[20] |
QUERIN O M, STEVEN G P, XIE Y M. Evolutionary structural optimisation (ESO) using a bidirectional algorithm [J]. Engineering Computations, 1998, 15(8): 1031–1048. DOI: 10.1108/02644409810244129.
|
[21] |
YOUNG V, QUERIN O M, STEVEN G P, et al. 3D and multiple load case bi-directional evolutionary structural optimization (BESO) [J]. Structural Optimization, 1999, 18(2): 183–192. DOI: 10.1007/BF01195993.
|
[22] |
HUANG X, XIE Y M. Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials [J]. Computational Mechanics, 2009, 43(3): 393–401. DOI: 10.1007/s00466-008-0312-0.
|
[23] |
HUANG X, XIE Y M. Evolutionary topology optimization of continuum structures with an additional displacement constraint [J]. Structural and Multidisciplinary Optimization, 2010, 40(1): 409–416. DOI: 10.1007/s00158-009-0382-4.
|
[24] |
CHOI W S, PARK G J. Structural optimization using equivalent static loads at all time intervals [J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191(19/20): 2105–2122. DOI: 10.1016/S0045-7825(01)00373-5.
|
[25] |
PARK G J, KANG B S. Validation of a structural optimization algorithm transforming dynamic loads into equivalent static loads [J]. Journal of Optimization Theory and Applications, 2003, 118(1): 191–200. DOI: 10.1023/A:1024799727258.
|
[26] |
PARK K J, LEE J N, PARK G J. Structural shape optimization using equivalent static loads transformed from dynamic loads [J]. International Journal for Numerical Methods in Engineering, 2005, 63(4): 589–602. DOI: 10.1002/nme.1295.
|
[27] |
蓝萌. 双向渐进结构优化法原理及其动力学优化研究 [J]. 机电技术, 2017(1): 17–22. DOI: 10.19508/j.cnki.1672-4801.2017.01.006.
LAN M. Research of bi-directional evolutionary structural optimization method and dynamic response [J]. Mechanical & Electrical Technology, 2017(1): 17–22. DOI: 10.19508/j.cnki.1672-4801.2017.01.006.
|
[28] |
王宪杰. 基于改进BESO算法的多尺度多相材料并行优化设计 [D]. 西安: 西北工业大学, 2015. DOI: 10.7666/d.D689590.
WANG X J. Multi-scale concurrent optimization of compositestructure and its periodic multiphase composite materialbased on improved BESO algorithm [D]. Xi'an, Shaanxi, China: Northwestern Polytechnical University, 2015. DOI: 10.7666/d.D689590.
|
[29] |
阎琨. 冲击荷载下结构优化设计研究 [D]. 大连: 大连理工大学, 2016.
YAN K. Structural optimization method of structure subject to impact loads [D]. Dalian, Liaoning, China: Dalian University of Technology.
|
[30] |
YAN K, CHENG G D, WANG B P. Adjoint methods of sensitivity analysis for Lyapunov equation [J]. Structural and Multidisciplinary Optimization, 2016, 53(2): 225–237. DOI: 10.1007/s00158-015-1323-z.
|
[31] |
HUANG X, XIE Y M. Evolutionary topology optimization of continuum structures: methods and applications [M]. Chichester, UK: Wiley, 2010: 17–50.
|
[32] |
ZHANG Y, JIN T, LI S Q, et al. Sample size effect on the mechanical behavior of aluminum foam [J]. International Journal of Mechanical Sciences, 2019, 151: 622–638. DOI: 10.1016/j.ijmecsci.2018.12.019.
|
[33] |
TILBROOK M T, DESHPANDE V S, FLECK N A. The impulsive response of sandwich beams: Analytical and numerical investigation of regimes of behaviour [J]. Journal of the Mechanics and Physics of Solids, 2006, 54(11): 2242–2280. DOI: 10.1016/j.jmps.2006.07.001.
|
[34] |
FLECK N A, DESHPANDE V S. The resistance of clamped sandwich beams to shock loading [J]. Journal of Applied Mechanics, 2004, 71(3): 386–401. DOI: 10.1115/1.1629109.
|
[35] |
XIE Q H, JING L, WANG Z H, et al. Deformation and failure of clamped shallow sandwich arches with foam core subjected to projectile impact [J]. Composites Part B:Engineering, 2013, 44(1): 330–338. DOI: 10.1016/j.compositesb.2012.04.070.
|
[36] |
张鹏飞, 刘志芳, 李世强. 内爆炸载荷下梯度泡沫铝夹芯管的动态响应 [J]. 爆炸与冲击, 2020, 40(7): 071402. DOI: 10.11883/bzycj-2019-0418.
ZHANG P F, LIU Z F, LI S Q. Dynamic response of sandwich tubes with graded foam aluminum cores under internal blast loading [J]. Explosion and Shock Waves, 2020, 40(7): 071402. DOI: 10.11883/bzycj-2019-0418.
|
[37] |
苏兴亚, 敬霖, 赵隆茂. 爆炸载荷下分层梯度泡沫铝夹芯板的失效模式与抗冲击性能 [J]. 爆炸与冲击, 2019, 39(6): 063103. DOI: 10.11883/bzycj-2018-0198.
SU X Y, JING L, ZHAO L M. Failure modes and shock resistance of sandwich panels with layered-gradient aluminum foam cores under air-blast loading [J]. Explosion and Shock Waves, 2019, 39(6): 063103. DOI: 10.11883/bzycj-2018-0198.
|
[38] |
叶楠, 张伟, 黄威, 等. PVC夹芯板在冲击载荷下的动态响应与失效模式 [J]. 爆炸与冲击, 2017, 37(1): 37–45. DOI: 10.11883/1001-1455(2017)01-0037-09.
YE N, ZHANG W, HUANG W, et al. Dynamic response and failure mode of PVC sandwich plates subjected to impact loading [J]. Explosion and Shock Waves, 2017, 37(1): 37–45. DOI: 10.11883/1001-1455(2017)01-0037-09.
|
[39] |
邹广平, 孙杭其, 唱忠良, 等. 聚氨酯/钢夹芯结构爆炸载荷下动力学响应的数值模拟 [J]. 爆炸与冲击, 2015, 35(6): 907–912. DOI: 10.11883/1001-1455(2015)06-0907-06.
ZOU G P, SUN H Q, CHANG Z L, et al. Numerical simulation on dynamic response of polyurethane/steel sandwich structure under blast loading [J]. Explosion and Shock Waves, 2015, 35(6): 907–912. DOI: 10.11883/1001-1455(2015)06-0907-06.
|