Citation: | LYU Haicheng, HUANG Xiaolong, LI Ning, WENG Chunsheng. Transmission and reflection characteristics of gaseous detonation waves impacting on gas-solid interface[J]. Explosion And Shock Waves, 2022, 42(11): 112101. doi: 10.11883/bzycj-2021-0523 |
[1] |
李海鹏, 何立明, 周鑫. 脉冲爆震发动机性能对爆震室材料强度的需求 [J]. 机械科学与技术, 2007, 26(5): 623–625. DOI: 10.13433/j.cnki.1003-8728.2007.05.019.
LI H, HE L M, ZHOU X. Pulse detonation engine ’s requirements for material strength of its detonation chamber [J]. Mechanical Science and Technology for Aerospace Engineering, 2007, 26(5): 623–625. DOI: 10.13433/j.cnki.1003-8728.2007.05.019.
|
[2] |
马华原, 龙源, 谢全民, 等. 浅埋高压输气管道爆炸地面振动的原型试验与数值模拟研究 [J]. 爆炸与冲击, 2019, 39(10): 102201. DOI: 10.11883/bzycj-2018-0303.
MA H Y, LONG Y, XIE Q M, et al. Prototypical experiment and numerical simulation of ground vibration resulting from explosion in shallowly buried gas pipelines [J]. Explosion and Shock Waves, 2019, 39(10): 102201. DOI: 10.11883/bzycj-2018-0303.
|
[3] |
王德明. 煤矿热动力灾害及特性 [J]. 煤炭学报, 2018, 43(1): 137–142. DOI: 10.13225/j.cnki.jccs.2017.4300.
WANG D M. Thermodynamic disaster in coal mine and its characteristics [J]. Journal of China Coal Society, 2018, 43(1): 137–142. DOI: 10.13225/j.cnki.jccs.2017.4300.
|
[4] |
LIEBERMAN D H, SHEPHERD J E. Detonation interaction with an interface [J]. Physics of Fluids, 2007, 19(9): 096101. DOI: 10.1063/1.2768903.
|
[5] |
于明, 刘全. 凝聚炸药爆轰波在高声速材料界面上的折射现象分析 [J]. 物理学报, 2016, 65(2): 024702. DOI: 10.7498/aps.65.024702.
YU M, LIU Q. Refraction of detonation wave at interface between condensed explosives and high sound-speed material [J]. Acta Physica Sinica, 2016, 65(2): 024702. DOI: 10.7498/aps.65.024702.
|
[6] |
TANG Y K C, MI X C, LEE J H S, et al. Transmission of a detonation across a density interface [J]. Shock Waves, 2018, 28: 967–979. DOI: 10.1007/s00193-018-0827-z.
|
[7] |
PEACE J T, LU F K. Detonation-to-shock wave transmission at a contact discontinuity [J]. Shock Waves, 2018, 28: 981–992. DOI: 10.1007/s00193-018-0804-6.
|
[8] |
DAMAZO J, SHEPHERD J E. Observations on the normal reflection of gaseous detonations [J]. Shock Waves, 2017, 27: 795–810. DOI: 10.1007/s00193-017-0736-6.
|
[9] |
张洋溢, 龙源, 何洋扬, 等. 爆轰波斜冲击金属介质理论在聚能装药药型罩设计中的应用研究 [J]. 振动与冲击, 2011, 30(7): 214–217. DOI: 10.13465/j.cnki.jvs.2011.07.035.
ZHANG Y Y, LONG Y, HE Y Y, et al. Applied research on the oblique impact theory of detonation waves at the explosive-metal interface in design of shaped charge [J]. Journal of Vibration and Shock, 2011, 30(7): 214–217. DOI: 10.13465/j.cnki.jvs.2011.07.035.
|
[10] |
周宁, 张冰冰, 冯磊, 等. 反射波对预混气体爆炸过程与管壁动态响应的影响 [J]. 爆炸与冲击, 2016, 36(4): 541–547. DOI: 10.11883/1001-1455(2016)04-0541-07.
ZHOU N, ZHANG B B, FENG L, et al. Effects of reflected wave on premixed-gas explosion and dynamic response of tube shells [J]. Explosion and Shock Waves, 2016, 36(4): 541–547. DOI: 10.11883/1001-1455(2016)04-0541-07.
|
[11] |
郑龙席, 李少华, 卢杰, 等. 真实爆震载荷作用下爆震室等寿命设计方法 [J]. 航空动力学报, 2017, 32(9): 2055–2062. DOI: 10.13224/j.cnki.jasp.2017.09.002.
ZHENG L X, LI S H, LU J, et al. Design method of equal life on detonation combustor under actual detonation loading [J]. Journal of Aerospace Power, 2017, 32(9): 2055–2062. DOI: 10.13224/j.cnki.jasp.2017.09.002.
|
[12] |
LI H W, GUO J, YANG F Q, et al. Explosion venting of hydrogen-air mixtures from a duct to a vented vessel [J]. International Journal of Hydrogen Energy, 2018, 43(24): 11307–11313. DOI: 10.1016/j.ijhydene.2018.05.016.
|
[13] |
PORTARO R, SADEK J, XU H, et al. Controlled release using gas detonation in needle-free liquid jet injections for drug delivery [J]. Applied Sciences, 2019, 9(13): 2712. DOI: 10.3390/app9132712.
|
[14] |
WANG W T, WANG X, MENG C M, et al. Characteristics of the seismic waves from a new active source based on methane gaseous detonation [J]. Earthquake Research in China, 2019, 33(2): 354–366. DOI: 10.19743/j.cnki.0891-4176.201902003.
|
[15] |
DU Y, ZHOU F, HU W, et al. Incremental dynamic crack propagation of pipe subjected to internal gaseous detonation [J]. International Journal of Impact Engineering, 2020, 142: 103580. DOI: 10.1016/j.ijimpeng.2020.103580.
|
[16] |
高健, 姚安仁, 冯鲁煜, 等. 烈性爆震下活塞材料破坏实验 [J]. 燃烧科学与技术, 2020(2): 120–124. DOI: 10.11715/rskxjs.R201901022.
GAO J, YAO A R, FENG L Y, et al. Experimental study on the piston material failures under detonation [J]. Journal of Combustion Science and Technology, 2020(2): 120–124. DOI: 10.11715/rskxjs.R201901022.
|
[17] |
高光发. 波动力学基础[M]. 第1版. 北京: 科学出版社, 2019: 225.
|
[18] |
严传俊, 范玮. 脉冲爆震发动机原理及关键技术[M]. 第1版. 西安: 西北工业大学出版社, 2005: 43.
|
[19] |
李维新. 一维不定常流与冲击波[M]. 第1版. 北京: 国防工业出版社, 2003: 262.
|
[20] |
IM K S, JOH S T, KIM C K, et al. Application of the CESE method to detonation with realistic finite-rate chemistry [C] // 40th AIAA Aerospace Sciences Meeting & Exhibit. 2002. DOI: 10.2514/6.2002-1020
|
[21] |
ROKHY H, SOURY H. Fluid structure interaction with a finite rate chemistry model for simulation of gaseous detonation metal-forming [J]. International Journal of Hydrogen Energy, 2019, 44(41): 23289–23302. DOI: 10.1016/j.ijhydene.2019.07.030.
|
[22] |
FADLUN E A, VERZICCO R, ORLANDI P, et al. Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations [J]. Journal of Computational Physics, 2000, 161(1): 35–60. DOI: 10.1006/jcph.2000.6484.
|
[23] |
GORDON S, MCBRIDE B J. Computer program for calculation of complex chemical equilibrium compositions and applications. Part 1: Analysis[M]. Washington: NASA Reference Publications, 1994: 39–40.
|
[24] |
冯明德, 彭艳菊, 刘永强, 等. SHPB实验技术研究 [J]. 地球物理学进展, 2006, 21(1): 273–278.
FENG M D, PENG Y J, LIU Y Q, et al. Study of SHPB technique [J]. Progress in Geophysics, 2006, 21(1): 273–278.
|
[25] |
陈东华, 王立权. 两类冲击杆端部的二维数值分析及实验研究 [J]. 哈尔滨工程大学学报, 2016, 37(5): 707–712. DOI: 10.11990/jheu.201504055.
CHEN D H, WANG L Q. Two-dimensional numerical analysis and experimental study of two types of impact bars [J]. Journal of Harbin Engineering University, 2016, 37(5): 707–712. DOI: 10.11990/jheu.201504055.
|