Citation: | GAO Chu, KONG Xiangzhen, FANG Qin, WANG Yin, YANG Ya. Numerical study on attenuation of stress wave in concrete subjected to explosion[J]. Explosion And Shock Waves, 2022, 42(12): 123202. doi: 10.11883/bzycj-2022-0041 |
[1] |
方秦, 陈小伟. 冲击爆炸效应与工程防护专辑·编者按 [J]. 中国科学: 物理学 力学 天文学, 2020, 50(2): 024601. DOI: 10.1360/SSPMA-2019-0404.
FANG Q, CHEN X W. Special topic of impact and explosion effect and engineering protection [J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2020, 50(2): 024601. DOI: 10.1360/SSPMA-2019-0404.
|
[2] |
GRAN J K, EHRGOTT J Q, CARGILE J D. Cavity expansion experiments with spherical explosive charges in concrete [R]. Vicksburg, USA: Army Engineer Research and Development Center, 2009.
|
[3] |
SCHMIDT M J. High pressure and high strain rate behavior of cementitious materials: experiments and elastic/viscoplastic modeling [D]. Florida, USA: University of Florida, 2003: 4−56.
|
[4] |
MU C M, ZHOU H, MA H F. Prediction method for ground shock parameters of explosion in concrete [J]. Construction and Building Materials, 2021, 291: 123372. DOI: 10.1016/j.conbuildmat.2021.123372.
|
[5] |
黄家蓉, 刘光昆, 吴飚, 等. 爆炸冲击作用下混凝土中动态应力波测试与仿真 [J]. 防护工程, 2020, 42(4): 23–28. DOI: 10.3969/j.issn.1674-1854.2020.04.003.
HUANG J R, LIU G K, WU B, et al. Testing and simulation of dynamic stress wave in concrete under explosion and impact [J]. Protective Engineering, 2020, 42(4): 23–28. DOI: 10.3969/j.issn.1674-1854.2020.04.003.
|
[6] |
宗国庆. 混凝土介质爆破效应研究 [D]. 北京: 北京理工大学, 1994: 74−76.
ZONG G Q. Research on blasting effects under concrete medium [D]. Beijing, China: Beijing Institute of Technology, 1994: 74−76.
|
[7] |
TU H, FUNG T C, TAN K H, et al. An analytical model to predict the compressive damage of concrete plates under contact detonation [J]. International Journal of Impact Engineering, 2019, 134: 103344. DOI: 10.1016/j.ijimpeng.2019.103344.
|
[8] |
杨刚, 胡德安, 韩旭. 混凝土中爆炸模拟的数值方法比较 [J]. 应用力学学报, 2011, 28(4): 423–426.
YANG G, HU D A, HAN X. Comparison study of numerical methods in simulation of explosion in concretes [J]. Chinese Journal of Applied Mechanics, 2011, 28(4): 423–426.
|
[9] |
董永香, 夏昌敬, 段祝平. 平面爆炸波在半无限混凝土介质中传播与衰减特性的数值分析 [J]. 工程力学, 2006, 23(2): 60–65. DOI: 10.3969/j.issn.1000-4750.2006.02.011.
DONG Y X, XIA C J, DUAN Z P. Numerical analysis of plane explosive wave propagation with its attenuation behavior in semi-infinite medium [J]. Engineering Mechanics, 2006, 23(2): 60–65. DOI: 10.3969/j.issn.1000-4750.2006.02.011.
|
[10] |
赵凯, 王肖钧, 卞梁, 等. 混凝土介质中不同药形装药爆炸波传播特性的数值模拟 [J]. 中国科学技术大学学报, 2007, 37(7): 711–716. DOI: 10.3969/j.issn.0253-2778.2007.07.004.
ZHAO K, WANG X J, BIAN L, et al. Numerical study on the propagation and damage behavior of the blasting wave with differently shaped explosives in concrete [J]. Journal of University of Science and Technology of China, 2007, 37(7): 711–716. DOI: 10.3969/j.issn.0253-2778.2007.07.004.
|
[11] |
KONG X Z, FANG Q, CHEN L, et al. A new material model for concrete subjected to intense dynamic loadings [J]. International Journal of Impact Engineering, 2018, 120: 60–78. DOI: 10.1016/j.ijimpeng.2018.05.006.
|
[12] |
ZHANG S B, KONG X Z, FANG Q, et al. Numerical prediction of dynamic failure in concrete targets subjected to projectile impact by a modified Kong-Fang material model [J]. International Journal of Impact Engineering, 2020, 144: 103633. DOI: 10.1016/j.ijimpeng.2020.103633.
|
[13] |
WANG Y, KONG X Z, FANG Q, et al. Modelling damage mechanisms of concrete under high confinement pressure [J]. International Journal of Impact Engineering, 2021, 150: 103815. DOI: 10.1016/j.ijimpeng.2021.103815.
|
[14] |
王银, 孔祥振, 方秦, 等. 弹体对混凝土材料先侵彻后爆炸损伤破坏效应的数值模拟研究 [J]. 爆炸与冲击, 2022, 42(1): 013301. DOI: 10.11883/bzycj-2021-0132.
WANG Y, KONG X Z, FANG Q, et al. Numerical investigation on damage and failure of concrete targets subjected to projectile penetration followed by explosion [J]. Explosion and Shock Waves, 2022, 42(1): 013301. DOI: 10.11883/bzycj-2021-0132.
|
[15] |
YANG S B, KONG X Z, WU H, et al. Constitutive modelling of UHPCC material under impact and blast loadings [J]. International Journal of Impact Engineering, 2021, 153: 103860. DOI: 10.1016/j.ijimpeng.2021.103860.
|
[16] |
MANDAL J, GOEL M D, AGARWAL A K. Surface and buried explosions: an explorative review with recent advances [J]. Archives of Computational Methods in Engineering, 2021, 28(7): 4815–4835. DOI: 10.1007/s11831-021-09553-2.
|
[17] |
李重情, 穆朝民, 石必明. 变埋深条件下混凝土中爆炸应力传播规律的研究 [J]. 振动与冲击, 2017, 36(6): 140–145. DOI: 10.13465/j.cnki.jvs.2017.07.021.
LI Z Q, MU C M, SHI B M. Investigate on shock stress propagation in concrete at different depths under blasting [J]. Journal of Vibration and Shock, 2017, 36(6): 140–145. DOI: 10.13465/j.cnki.jvs.2017.07.021.
|
[18] |
DRAKE J L, LITTLE C D. Ground shock from penetrating conventional weapons [R]. 1983: 1−6.
|
[19] |
施鹏, 邓国强, 杨秀敏, 等. 土中爆炸地冲击能量分布研究 [J]. 爆炸与冲击, 2006, 26(3): 240–244. DOI: 10.11883/1001-1455(2006)03-0240-05.
SHI P, DENG G Q, YANG X M, et al. Study on ground shock energy distribution of explosion in soil [J]. Explosion and Shock Waves, 2006, 26(3): 240–244. DOI: 10.11883/1001-1455(2006)03-0240-05.
|
[20] |
LEONG E C, ANAND S, CHEONG H K, et al. Re-examination of peak stress and scaled distance due to ground shock [J]. International Journal of Impact Engineering, 2007, 34(9): 1487–1499. DOI: 10.1016/j.ijimpeng.2006.10.009.
|
[21] |
GRAN J K, FREW D J. In-target radial stress measurements from penetration experiments into concrete by ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1997, 19(8): 715–726. DOI: 10.1016/S0734-743X(97)00008-0.
|
[22] |
GEBBEKEN N, GREULICH S, PIETZSCH A. Hugoniot properties for concrete determined by full-scale detonation experiments and flyer-plate-impact tests [J]. International Journal of Impact Engineering, 2006, 32(12): 2017–2031. DOI: 10.1016/j.ijimpeng.2005.08.003.
|
[23] |
ERZAR B, PONTIROLI C, BUZAUD E. Shock characterization of an ultra-high strength concrete [J]. The European Physical Journal Special Topics, 2016, 225(2): 355–361. DOI: 10.1140/epjst/e2016-02637-4.
|
[24] |
PONTIROLI C, ERZAR B. Impact response of UHPC and UHPFRC: experimental study and numerical simulation [C] // Proceedings of the 10th International Conference on Fracture Mechanics of Concrete and Concrete Structures. Quebec, Canada, 2019.
|
[25] |
WILLIAMS E M, GRAHAM S S, AKERS S A, et al. Mechanical properties of a baseline UHPC with and without steel fibers [J]. WIT Transactions on Engineering Sciences, 2009, 64(12): 93–104. DOI: 10.2495/MC090091.
|
[26] |
REN G M, WU H, FANG Q, et al. Triaxial compressive behavior of UHPCC and applications in the projectile impact analyses [J]. Construction and Building Materials, 2016, 113: 1–14. DOI: 10.1016/j.conbuildmat.2016.02.227.
|
[27] |
TARVER C M, MCGUIRE E M. Reactive flow modeling of the interaction of TATB detonation waves with inert materials [R]. 2002.
|
[28] |
VAN AMELSFORT R, WEERHEIJM J. The failure mode of concrete slabs due to contact charges [R]. Netherlands: Prins Maurits Laboratorium, 1988.
|
[29] |
FORBES J W. Shock wave compression of condensed matter: a primer [M]. Berlin, Germany: Springer, 2012.
|
[30] |
赵凯. 分层防护层对爆炸波的衰减和弥散作用研究 [D]. 合肥: 中国科学技术大学, 2007: 74−75.
ZHAO K. The attenuation and dispersion effects on explosive wave of layered protective engineering [D]. Hefei, Anhui, China: University of Science and Technology of China, 2007: 74−75.
|
[31] |
郑哲敏, 解伯民, 谈庆明, 等. 流体弹塑性模型及其在核爆与穿甲方面的应用 [R]. 北京: 中国科学院力学研究所, 1982.
|
[32] |
谈庆明. 量纲分析 [M]. 合肥: 中国科学技术大学出版社, 2005: 1−3.
TAN Q M. Dimensional analysis [M]. Hefei, Anhui, China: China University of Science and Technology Press, 2005: 1−3.
|
[33] |
WESTINE P S, FRIESENHAHN G J. Free-field ground shock pressures from buried detonations in saturated and unsaturated soils [R]. 1983: 12−16.
|