Citation: | REN Huilan, RONG Yu, XU Xiangzhao. An improved material model for numerical simulation of projectile perforating concrete[J]. Explosion And Shock Waves, 2022, 42(11): 113301. doi: 10.11883/bzycj-2022-0131 |
[1] |
王可慧, 周刚, 李明, 等. 弹体高速侵彻钢筋混凝土靶试验研究 [J]. 爆炸与冲击, 2021, 41(11): 113302. DOI: 10.11883/bzycj-2020-0463.
WANG K H, ZHOU G, LI M, et al. Experimental research on the mechanism of a high-velocity projectile penetrating into a reinforced concrete target [J]. Explosion and Shock Waves, 2021, 41(11): 113302. DOI: 10.11883/bzycj-2020-0463.
|
[2] |
XU X Z, MA T B, NING J G. Failure analytical model of reinforced concrete slab under impact loading [J]. Construction and Building Materials, 2019, 223: 679–691. DOI: 10.1016/j.conbuildmat.2019.07.008.
|
[3] |
ZHANG J, CHEN W S, HAO H, et al. Performance of concrete targets mixed with coarse aggregates against rigid projectile impact [J]. International Journal of Impact Engineering, 2020, 141: 103565. DOI: 10.1016/j.ijimpeng.2020.103565.
|
[4] |
马天宝, 武珺, 宁建国. 弹体高速侵彻钢筋混凝土的实验与数值模拟研究 [J]. 爆炸与冲击, 2019, 39(10): 103301. DOI: 10.11883/bzycj-2018-0275.
MA T B, WU J, NING J G. Experimental and numerical study on projectiles’ high-velocity penetration into reinforced concrete [J]. Explosion and Shock Waves, 2019, 39(10): 103301. DOI: 10.11883/bzycj-2018-0275.
|
[5] |
TU Z G, LU Y. Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations [J]. International Journal of Impact Engineering, 2009, 36(1): 132–146. DOI: 10.1016/j.ijimpeng.2007.12.010.
|
[6] |
CUI J, HAO H, SHI Y C. Discussion on the suitability of concrete constitutive models for high-rate response predictions of RC structures [J]. International Journal of Impact Engineering, 2017, 106: 202–216. DOI: 10.1016/j.ijimpeng.2017.04.003.
|
[7] |
HOLMQUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures[C]//Proceeding of 14th International Symposium on Ballistics. Quebec, Canada, 1993.
|
[8] |
王志亮, 毕程程, 李鸿儒. 混凝土爆破损伤的SPH-FEM耦合法数值模拟 [J]. 爆炸与冲击, 2018, 38(6): 1419–1428. DOI: 10.11883/bzycj-2017-0209.
WANG Z L, BI C C, LI H R. Numerical simulation of blasting damage in concrete using a coupled SPH-FEM algorithm [J]. Explosion and Shock Waves, 2018, 38(6): 1419–1428. DOI: 10.11883/bzycj-2017-0209.
|
[9] |
DONG H, WU H J, LIU Z H, et al. Penetration characteristics of pyramidal projectile into concrete target [J]. International Journal of Impact Engineering, 2020, 143: 103583. DOI: 10.1016/j.ijimpeng.2020.103583.
|
[10] |
KUMAR V, KARTIK K V, IQBAL M A. Experimental and numerical investigation of reinforced concrete slabs under blast loading [J]. Engineering Structures, 2020, 206: 110125. DOI: 10.1016/j.engstruct.2019.110125.
|
[11] |
WAN W Z, YANG J, XU G J, et al. Determination and evaluation of Holmquist-Johnson-Cook constitutive model parameters for ultra-high-performance concrete with steel fibers [J]. International Journal of Impact Engineering, 2021, 156: 103966. DOI: 10.1016/j.ijimpeng.2021.103966.
|
[12] |
IQBAL M A, RAJPUT A, GUPTA N K. Performance of prestressed concrete targets against projectile impact [J]. International Journal of Impact Engineering, 2017, 110: 15–25. DOI: 10.1016/j.ijimpeng.2016.11.015.
|
[13] |
戴湘晖, 段建, 周刚, 等. 低速弹体贯穿钢筋混凝土多层靶的破坏特性 [J]. 兵工学报, 2018, 39(4): 698–706. DOI: 10.3969/j.issn.1000-1093.2018.04.009.
DAI X H, DUAN J, ZHOU G, et al. Damage effect of low velocity projectile perforating into multi-layered reinforced concrete slabs [J]. Acta Armamentarii, 2018, 39(4): 698–706. DOI: 10.3969/j.issn.1000-1093.2018.04.009.
|
[14] |
POLANCO-LORIA M, HOPPERSTAD O S, BØRVIK T, et al. Numerical predictions of ballistic limits for concrete slabs using a modified version of the HJC concrete model [J]. International Journal of Impact Engineering, 2008, 35(5): 290–303. DOI: 10.1016/j.ijimpeng.2007.03.001.
|
[15] |
LIU Y, MA A E, HUANG F L. Numerical simulations of oblique-angle penetration by deformable projectiles into concrete targets [J]. International Journal of Impact Engineering, 2009, 36(3): 438–446. DOI: 10.1016/j.ijimpeng.2008.03.006.
|
[16] |
ISLAM M J, SWADDIWUDHIPONG S, LIU Z S. Penetration of concrete targets using a modified Holmquist-Johnson-Cook material model [J]. International Journal of Computational Methods, 2013, 09(04): 1250056. DOI: 10.1142/S0219876212500569.
|
[17] |
KONG X, FANG Q, WU H, et al. Numerical predictions of cratering and scabbing in concrete slabs subjected to projectile impact using a modified version of HJC material model [J]. International Journal of Impact Engineering, 2016, 95: 61–71. DOI: 10.1016/j.ijimpeng.2016.04.014.
|
[18] |
LIU K, WU C Q, LI X B, et al. A modified HJC model for improved dynamic response of brittle materials under blasting loads [J]. Computers and Geotechnics, 2020, 123: 103584. DOI: 10.1016/j.compgeo.2020.103584.
|
[19] |
DU Y, WEI J, LIU K, et al. Research on dynamic constitutive model of ultra-high performance fiber-reinforced concrete [J]. Construction and Building Materials, 2020, 234: 117386. DOI: 10.1016/j.conbuildmat.2019.117386.
|
[20] |
TAYLOR L M, CHEN E, KUSZMAUL J S. Microcrack-induced damage accumulation in brittle rock under dynamic loading [J]. Computer Methods in Applied Mechanics and Engineering, 1986, 55(3): 301–320. DOI: 10.1016/0045-7825(86)90057-5.
|
[21] |
LEPPÄNEN J. Concrete subjected to projectile and fragment impacts: modelling of crack softening and strain rate dependency in tension [J]. International Journal of Impact Engineering, 2006, 32(11): 1828–1841. DOI: 10.1016/j.ijimpeng.2005.06.005.
|
[22] |
TU Z G, LU Y. Modifications of RHT material model for improved numerical simulation of dynamic response of concrete [J]. International Journal of Impact Engineering, 2010, 37(10): 1072–1082. DOI: 10.1016/j.ijimpeng.2010.04.004.
|
[23] |
HAO H, ZHOU X Q. Concrete material model for high rate dynamic analysis[C]//7th International Conference on Shock and Impact Loans on Structures. Beijing, 2007.
|
[24] |
HARTMANN T, PIETZSCH A, GEBBEKEN N. A hydrocode material model for concrete [J]. International Journal of Protective Structures, 2010, 1: 443–468. DOI: 10.1260/2041-4196.1.4.443.
|
[25] |
XU H, WEN H M. A computational constitutive model for concrete subjected to dynamic loadings [J]. International Journal of Impact Engineering, 2016, 91: 116–125. DOI: 10.1016/j.ijimpeng.2016.01.003.
|
[26] |
GOMATHI K A, RAJAGOPAL A, REDDY K S S, et al. Plasticity based material model for concrete subjected to dynamic loadings [J]. International Journal of Impact Engineering, 2020, 142: 103581. DOI: 10.1016/j.ijimpeng.2020.103581.
|
[27] |
YANG L, WANG G S, ZHAO G F, et al. A rate and pressure-dependent damage-plasticity constitutive model for rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 133: 104394. DOI: 10.1016/j.ijrmms.2020.104394.
|
[28] |
MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D [J]. International Journal of Impact Engineering, 1997, 19(9/10): 847–873. DOI: 10.1016/S0734-743X(97)00023-7.
|
[29] |
RIEDEL W, THOMA K, HIERMAIER S, et al. Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes[C]//Proceedings of the 9th International Symposium on the Effect of Munitions with Structures, Strausberg. Berlin, Germany, 1999.
|
[30] |
KONG X Z, FANG Q, CHEN L, et al. A new material model for concrete subjected to intense dynamic loadings [J]. International Journal of Impact Engineering, 2018, 120: 60–78. DOI: 10.1016/j.ijimpeng.2018.05.006.
|
[31] |
XU H, WEN H M. Semi-empirical equations for the dynamic strength enhancement of concrete-like materials [J]. International Journal of Impact Engineering, 2013, 60: 76–81. DOI: 10.1016/j.ijimpeng.2013.04.005.
|
[32] |
WANG G S, LU D C, DU X L, et al. A true 3D frictional hardening elastoplastic constitutive model of concrete based on a unified hardening/softening function [J]. Journal of the Mechanics and Physics of Solids, 2018, 119: 250–273. DOI: 10.1016/j.jmps.2018.06.019.
|
[33] |
WEERHEIJM J, VAN DOORMAAL J C A M. Tensile failure of concrete at high loading rates: new test data on strength and fracture energy from instrumented spalling tests [J]. International Journal of Impact Engineering, 2007, 34(3): 609–626. DOI: 10.1016/j.ijimpeng.2006.01.005.
|
[34] |
ZHANG S B, KONG X Z, FANG Q, et al. Numerical prediction of dynamic failure in concrete targets subjected to projectile impact by a modified Kong-Fang material model [J]. International Journal of Impact Engineering, 2020, 144: 103633. DOI: 10.1016/j.ijimpeng.2020.103633.
|
[35] |
WANG Y, KONG X Z, FANG Q, et al. Modelling damage mechanisms of concrete under high confinement pressure [J]. International Journal of Impact Engineering, 2021, 150: 103815. DOI: 10.1016/j.ijimpeng.2021.103815.
|
[36] |
ATTARD M M, SETUNGE S. Stress-strain relationship of confined and unconfined concrete [J]. ACI Materials Journal, 1996, 93(5): 432–442.
|
[37] |
SAMANI A K, ATTARD M M. A stress-strain model for uniaxial and confined concrete under compression [J]. Engineering Structures, 2012, 41: 335–349. DOI: 10.1016/j.engstruct.2012.03.027.
|
[38] |
HANCHAK S J, FORRESTAL M J, YOUNG E R, et al. Perforation of concrete slabs with 48 MPa (7 ksi) and 140 MPa (20 ksi) unconfined compressive strengths [J]. International Journal of Impact Engineering, 1992, 12(1): 1–7. DOI: 10.1016/0734-743X(92)90282-X.
|