Volume 42 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
REN Huilan, RONG Yu, XU Xiangzhao. An improved material model for numerical simulation of projectile perforating concrete[J]. Explosion And Shock Waves, 2022, 42(11): 113301. doi: 10.11883/bzycj-2022-0131
Citation: REN Huilan, RONG Yu, XU Xiangzhao. An improved material model for numerical simulation of projectile perforating concrete[J]. Explosion And Shock Waves, 2022, 42(11): 113301. doi: 10.11883/bzycj-2022-0131

An improved material model for numerical simulation of projectile perforating concrete

doi: 10.11883/bzycj-2022-0131
  • Received Date: 2022-03-31
  • Rev Recd Date: 2022-06-29
  • Available Online: 2022-07-01
  • Publish Date: 2022-11-18
  • Investigating the mechanical property of concrete structures subjected to impact loading has great significance on the design and evaluation of weapons and protective structures, while appropriate material models can more accurately predict the mechanical behavior and damage mode of concrete structures. In this paper, an improved damage-plasticity material model for concrete was proposed to describe its mechanical response subjected to impact loading. The equation of state, including elastic stage, transition stage and compacted stage, is employed to describe the pressure vs. volume strain relationship. The strain rate effect is considered by combining the radial enhancement method and the semi-empirical equation of dynamic increase factor. A unified hardening/softening function related to the shear damage caused by microcracking and the compacted damage caused by pore collapse are introduced to describe the nonlinear ascend and descend of compressive strain-stress curves in plastic stage, while an exponential function related to the tensile damage is employed to reflect the strain softening behavior under tension. Based on the current extent of damage, the failure strength surface of this improved material model is determined through linearly interpolation between the maximum and yield strength surfaces or the maximum and residual strength surfaces, and the influence of third deviatoric stress invariant on the failure strength surface is considered for describing the reduction of shear strength during the transition from high pressure to low pressure. The fractionally associated flow rule is employed to consider the volumetric dilatancy of concrete materials under confining pressure. Then, the availability and accuracy of this improved material model are verified by the numerical simulations of single element under different loading conditions, and its performance improvement is discussed by comparing with the HJC model, RHT model, Kong-Fang model and empirical equation. Finally, the numerical simulations of projectile perforating reinforced concrete slab are conducted to further validate the feasibility and accuracy of this improved material model under impact loading, from which numerical results indicate that the damage mode and residual velocity predicted by this improved material model are closer to experimental results than HJC model.
  • loading
  • [1]
    王可慧, 周刚, 李明, 等. 弹体高速侵彻钢筋混凝土靶试验研究 [J]. 爆炸与冲击, 2021, 41(11): 113302. DOI: 10.11883/bzycj-2020-0463.

    WANG K H, ZHOU G, LI M, et al. Experimental research on the mechanism of a high-velocity projectile penetrating into a reinforced concrete target [J]. Explosion and Shock Waves, 2021, 41(11): 113302. DOI: 10.11883/bzycj-2020-0463.
    [2]
    XU X Z, MA T B, NING J G. Failure analytical model of reinforced concrete slab under impact loading [J]. Construction and Building Materials, 2019, 223: 679–691. DOI: 10.1016/j.conbuildmat.2019.07.008.
    [3]
    ZHANG J, CHEN W S, HAO H, et al. Performance of concrete targets mixed with coarse aggregates against rigid projectile impact [J]. International Journal of Impact Engineering, 2020, 141: 103565. DOI: 10.1016/j.ijimpeng.2020.103565.
    [4]
    马天宝, 武珺, 宁建国. 弹体高速侵彻钢筋混凝土的实验与数值模拟研究 [J]. 爆炸与冲击, 2019, 39(10): 103301. DOI: 10.11883/bzycj-2018-0275.

    MA T B, WU J, NING J G. Experimental and numerical study on projectiles’ high-velocity penetration into reinforced concrete [J]. Explosion and Shock Waves, 2019, 39(10): 103301. DOI: 10.11883/bzycj-2018-0275.
    [5]
    TU Z G, LU Y. Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations [J]. International Journal of Impact Engineering, 2009, 36(1): 132–146. DOI: 10.1016/j.ijimpeng.2007.12.010.
    [6]
    CUI J, HAO H, SHI Y C. Discussion on the suitability of concrete constitutive models for high-rate response predictions of RC structures [J]. International Journal of Impact Engineering, 2017, 106: 202–216. DOI: 10.1016/j.ijimpeng.2017.04.003.
    [7]
    HOLMQUIST T J, JOHNSON G R, COOK W H. A computational constitutive model for concrete subjected to large strains, high strain rates, and high pressures[C]//Proceeding of 14th International Symposium on Ballistics. Quebec, Canada, 1993.
    [8]
    王志亮, 毕程程, 李鸿儒. 混凝土爆破损伤的SPH-FEM耦合法数值模拟 [J]. 爆炸与冲击, 2018, 38(6): 1419–1428. DOI: 10.11883/bzycj-2017-0209.

    WANG Z L, BI C C, LI H R. Numerical simulation of blasting damage in concrete using a coupled SPH-FEM algorithm [J]. Explosion and Shock Waves, 2018, 38(6): 1419–1428. DOI: 10.11883/bzycj-2017-0209.
    [9]
    DONG H, WU H J, LIU Z H, et al. Penetration characteristics of pyramidal projectile into concrete target [J]. International Journal of Impact Engineering, 2020, 143: 103583. DOI: 10.1016/j.ijimpeng.2020.103583.
    [10]
    KUMAR V, KARTIK K V, IQBAL M A. Experimental and numerical investigation of reinforced concrete slabs under blast loading [J]. Engineering Structures, 2020, 206: 110125. DOI: 10.1016/j.engstruct.2019.110125.
    [11]
    WAN W Z, YANG J, XU G J, et al. Determination and evaluation of Holmquist-Johnson-Cook constitutive model parameters for ultra-high-performance concrete with steel fibers [J]. International Journal of Impact Engineering, 2021, 156: 103966. DOI: 10.1016/j.ijimpeng.2021.103966.
    [12]
    IQBAL M A, RAJPUT A, GUPTA N K. Performance of prestressed concrete targets against projectile impact [J]. International Journal of Impact Engineering, 2017, 110: 15–25. DOI: 10.1016/j.ijimpeng.2016.11.015.
    [13]
    戴湘晖, 段建, 周刚, 等. 低速弹体贯穿钢筋混凝土多层靶的破坏特性 [J]. 兵工学报, 2018, 39(4): 698–706. DOI: 10.3969/j.issn.1000-1093.2018.04.009.

    DAI X H, DUAN J, ZHOU G, et al. Damage effect of low velocity projectile perforating into multi-layered reinforced concrete slabs [J]. Acta Armamentarii, 2018, 39(4): 698–706. DOI: 10.3969/j.issn.1000-1093.2018.04.009.
    [14]
    POLANCO-LORIA M, HOPPERSTAD O S, BØRVIK T, et al. Numerical predictions of ballistic limits for concrete slabs using a modified version of the HJC concrete model [J]. International Journal of Impact Engineering, 2008, 35(5): 290–303. DOI: 10.1016/j.ijimpeng.2007.03.001.
    [15]
    LIU Y, MA A E, HUANG F L. Numerical simulations of oblique-angle penetration by deformable projectiles into concrete targets [J]. International Journal of Impact Engineering, 2009, 36(3): 438–446. DOI: 10.1016/j.ijimpeng.2008.03.006.
    [16]
    ISLAM M J, SWADDIWUDHIPONG S, LIU Z S. Penetration of concrete targets using a modified Holmquist-Johnson-Cook material model [J]. International Journal of Computational Methods, 2013, 09(04): 1250056. DOI: 10.1142/S0219876212500569.
    [17]
    KONG X, FANG Q, WU H, et al. Numerical predictions of cratering and scabbing in concrete slabs subjected to projectile impact using a modified version of HJC material model [J]. International Journal of Impact Engineering, 2016, 95: 61–71. DOI: 10.1016/j.ijimpeng.2016.04.014.
    [18]
    LIU K, WU C Q, LI X B, et al. A modified HJC model for improved dynamic response of brittle materials under blasting loads [J]. Computers and Geotechnics, 2020, 123: 103584. DOI: 10.1016/j.compgeo.2020.103584.
    [19]
    DU Y, WEI J, LIU K, et al. Research on dynamic constitutive model of ultra-high performance fiber-reinforced concrete [J]. Construction and Building Materials, 2020, 234: 117386. DOI: 10.1016/j.conbuildmat.2019.117386.
    [20]
    TAYLOR L M, CHEN E, KUSZMAUL J S. Microcrack-induced damage accumulation in brittle rock under dynamic loading [J]. Computer Methods in Applied Mechanics and Engineering, 1986, 55(3): 301–320. DOI: 10.1016/0045-7825(86)90057-5.
    [21]
    LEPPÄNEN J. Concrete subjected to projectile and fragment impacts: modelling of crack softening and strain rate dependency in tension [J]. International Journal of Impact Engineering, 2006, 32(11): 1828–1841. DOI: 10.1016/j.ijimpeng.2005.06.005.
    [22]
    TU Z G, LU Y. Modifications of RHT material model for improved numerical simulation of dynamic response of concrete [J]. International Journal of Impact Engineering, 2010, 37(10): 1072–1082. DOI: 10.1016/j.ijimpeng.2010.04.004.
    [23]
    HAO H, ZHOU X Q. Concrete material model for high rate dynamic analysis[C]//7th International Conference on Shock and Impact Loans on Structures. Beijing, 2007.
    [24]
    HARTMANN T, PIETZSCH A, GEBBEKEN N. A hydrocode material model for concrete [J]. International Journal of Protective Structures, 2010, 1: 443–468. DOI: 10.1260/2041-4196.1.4.443.
    [25]
    XU H, WEN H M. A computational constitutive model for concrete subjected to dynamic loadings [J]. International Journal of Impact Engineering, 2016, 91: 116–125. DOI: 10.1016/j.ijimpeng.2016.01.003.
    [26]
    GOMATHI K A, RAJAGOPAL A, REDDY K S S, et al. Plasticity based material model for concrete subjected to dynamic loadings [J]. International Journal of Impact Engineering, 2020, 142: 103581. DOI: 10.1016/j.ijimpeng.2020.103581.
    [27]
    YANG L, WANG G S, ZHAO G F, et al. A rate and pressure-dependent damage-plasticity constitutive model for rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 133: 104394. DOI: 10.1016/j.ijrmms.2020.104394.
    [28]
    MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D [J]. International Journal of Impact Engineering, 1997, 19(9/10): 847–873. DOI: 10.1016/S0734-743X(97)00023-7.
    [29]
    RIEDEL W, THOMA K, HIERMAIER S, et al. Penetration of reinforced concrete by BETA-B-500 numerical analysis using a new macroscopic concrete model for hydrocodes[C]//Proceedings of the 9th International Symposium on the Effect of Munitions with Structures, Strausberg. Berlin, Germany, 1999.
    [30]
    KONG X Z, FANG Q, CHEN L, et al. A new material model for concrete subjected to intense dynamic loadings [J]. International Journal of Impact Engineering, 2018, 120: 60–78. DOI: 10.1016/j.ijimpeng.2018.05.006.
    [31]
    XU H, WEN H M. Semi-empirical equations for the dynamic strength enhancement of concrete-like materials [J]. International Journal of Impact Engineering, 2013, 60: 76–81. DOI: 10.1016/j.ijimpeng.2013.04.005.
    [32]
    WANG G S, LU D C, DU X L, et al. A true 3D frictional hardening elastoplastic constitutive model of concrete based on a unified hardening/softening function [J]. Journal of the Mechanics and Physics of Solids, 2018, 119: 250–273. DOI: 10.1016/j.jmps.2018.06.019.
    [33]
    WEERHEIJM J, VAN DOORMAAL J C A M. Tensile failure of concrete at high loading rates: new test data on strength and fracture energy from instrumented spalling tests [J]. International Journal of Impact Engineering, 2007, 34(3): 609–626. DOI: 10.1016/j.ijimpeng.2006.01.005.
    [34]
    ZHANG S B, KONG X Z, FANG Q, et al. Numerical prediction of dynamic failure in concrete targets subjected to projectile impact by a modified Kong-Fang material model [J]. International Journal of Impact Engineering, 2020, 144: 103633. DOI: 10.1016/j.ijimpeng.2020.103633.
    [35]
    WANG Y, KONG X Z, FANG Q, et al. Modelling damage mechanisms of concrete under high confinement pressure [J]. International Journal of Impact Engineering, 2021, 150: 103815. DOI: 10.1016/j.ijimpeng.2021.103815.
    [36]
    ATTARD M M, SETUNGE S. Stress-strain relationship of confined and unconfined concrete [J]. ACI Materials Journal, 1996, 93(5): 432–442.
    [37]
    SAMANI A K, ATTARD M M. A stress-strain model for uniaxial and confined concrete under compression [J]. Engineering Structures, 2012, 41: 335–349. DOI: 10.1016/j.engstruct.2012.03.027.
    [38]
    HANCHAK S J, FORRESTAL M J, YOUNG E R, et al. Perforation of concrete slabs with 48 MPa (7 ksi) and 140 MPa (20 ksi) unconfined compressive strengths [J]. International Journal of Impact Engineering, 1992, 12(1): 1–7. DOI: 10.1016/0734-743X(92)90282-X.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(4)

    Article Metrics

    Article views (545) PDF downloads(202) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return