Volume 43 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
LIU Wei, LIANG Zhengfeng, RUAN Xijun, QU Kepeng. A study on the influence of wave shape controller on fragment scattering characteristics of fragmentation warhead[J]. Explosion And Shock Waves, 2023, 43(2): 023203. doi: 10.11883/bzycj-2022-0202
Citation: LIU Wei, LIANG Zhengfeng, RUAN Xijun, QU Kepeng. A study on the influence of wave shape controller on fragment scattering characteristics of fragmentation warhead[J]. Explosion And Shock Waves, 2023, 43(2): 023203. doi: 10.11883/bzycj-2022-0202

A study on the influence of wave shape controller on fragment scattering characteristics of fragmentation warhead

doi: 10.11883/bzycj-2022-0202
  • Received Date: 2022-05-11
  • Rev Recd Date: 2022-07-21
  • Available Online: 2022-09-09
  • Publish Date: 2023-02-25
  • In order to improve the uniformity of the fragments of the fragmentation warhead and enhance the axial lethality of the warhead, it was proposed to use a wave shape controller to control the scattering direction of the fragments. The shape of the wave shape controller was designed based on the law of detonation wave reflection at the wave shape controller interface and the Shapiro formula. The LS-DYNA software and ALE(arbitrary Lagrange-Euler) algorithm were used to numerically simulate the scattering process of fragments, and the static explosion test of the warhead prototype was carried out to verify the rationality of using the wave shape controller to improve the scattering characteristic of fragments. The difference in the fragment scattering processes with and without the wave shape controller were compared. The law of fragment scattering velocity and scattering angle of the warhead was analyzed and summarized when there was no wave shape controller and when the wave shape controller materials were nylon, polyurethane and PTFE(polytetrafluoroethylene), respectively. The results show that the wave shape controller can reduce the difference in the scattering velocities of the fragments between the center and both ends of the warhead, and evenly change the direction angles of the fragments scattering from the center to both ends, so that the fragments are distributed more uniformly along the axial direction. The wave shape controllers made of different materials have different effects on the scattering characteristics of the fragments, while the use of the wave shape controller reduces the fragment scattering velocity, reduces the fragment scattering angle, and increases the fragment distribution density. The error between the numerical calculation values and experimental values of fragment scattering angle is within 6.53%. Compared with that without a wave shape controller, the fragment scattering angles of the warhead prototypes with the wave shape controller and the material is nylon, polyurethane and PTFE reduced by 40.00%, 44.00% and 46.67%, respectively.
  • loading
  • [1]
    唐娇姣, 梁争峰, 陈元建. 防空反导毁伤技术现状与发展 [J]. 弹箭与制导学报, 2020, 40(1): 35–39, 45. DOI: 10.15892/j.cnki.djzdxb.2020.01.008.

    TANG J J, LIANG Z F, CHEN Y J. Present situation and development of air defense and antimissile damage technology [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2020, 40(1): 35–39, 45. DOI: 10.15892/j.cnki.djzdxb.2020.01.008.
    [2]
    王宝成, 袁宝慧. 防空反导破片杀伤战斗部现状与发展 [J]. 四川兵工学报, 2013, 34(9): 20–24. DOI: 10.11809/scbgxb2013.09.007.

    WANG B C, YUAN B H. Research states and trend of fragment warhead for air-defense and anti-missile [J]. Journal of Ordnance Equipment Engineering, 2013, 34(9): 20–24. DOI: 10.11809/scbgxb2013.09.007.
    [3]
    李付刚, 梁民族, 李翔宇, 等. 杀伤爆破战斗部杀伤威力的多目标优化 [J]. 兵工学报, 2021, 42(S1): 11–21. DOI: 10.3969/j.issn.1000-1093.2021.S1.002.

    LI F G, LIANG M Z, LI X Y, et al. Multi-objective optimization of lethal power of blast-fragmentation warhead [J]. Acta Armamentarii, 2021, 42(S1): 11–21. DOI: 10.3969/j.issn.1000-1093.2021.S1.002.
    [4]
    ZHU J J, ZHENG Y, LI W B, et al. Axial distribution of fragments from the dynamic explosion fragmentation of metal shells [J]. International Journal of Impact Engineering, 2019, 123: 140–146. DOI: 10.1016/j.ijimpeng.2018.09.020.
    [5]
    李茂, 高圣智, 侯海量, 等. 圆柱形装药驱动轴向预制破片飞散特性 [J]. 国防科技大学学报, 2021, 43(2): 141–147. DOI: 10.11887/j.cn.202102019.

    LI M, GAO S Z, HOU H L, et al. Projection characteristics of axial prefabricated fragments driven by cylindrical charge [J]. Journal of National University of Defense Technology, 2021, 43(2): 141–147. DOI: 10.11887/j.cn.202102019.
    [6]
    PANOWICZ R, KONARZEWSKI M, TRYPOLIN M. Analysis of the detonation initiation point position influence on the cylindrical fragmentation warhead effectiveness [J]. Journal of KONES, 2016, 23(1): 263–270. DOI: 10.5604/12314005.1213585.
    [7]
    CHEN W K, LI X Y, LU F Y, et al. Parallel control to fragments of a cylindrical structure driven by explosive inside [J]. Mathematical Problems in Engineering, 2015, 2015: 723463. DOI: 10.1155/2015/723463.
    [8]
    李松楠, 张国伟, 崔小杰, 等. 起爆点位置对破片飞散方向的影响研究 [J]. 兵器装备工程学报, 2018, 39(11): 49–53. DOI: 10.11809/bqzbgcxb2018.11.011.

    LI S N, ZAHNG G W, CUI X J, et al. Influence of the location of the detonating point on the dispersion direction of fragments [J]. Journal of Ordnance Equipment Engineering, 2018, 39(11): 49–53. DOI: 10.11809/bqzbgcxb2018.11.011.
    [9]
    张绍兴, 李翔宇, 丁亮亮, 等. 聚焦式战斗部破片轴向飞散控制技术 [J]. 高压物理学报, 2018, 32(1): 015103. DOI: 10.11858/gywlxb.20170512.

    ZHANG S X, LI X Y, DING L L, et al. Axial dispersion control of focusing fragment warhead [J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 015103. DOI: 10.11858/gywlxb.20170512.
    [10]
    DHOTE K D, MURTHY K P S, RAJAN K M, et al. Statistics of fragment dispersion by explosion in a fragment generator warhead [J]. Central European Journal of Energetic Materials, 2016, 13(1): 183–197. DOI: 10.22211/cejem/64971.
    [11]
    张会锁, 刘晓蕾, 罗旭. 波形控制器对杆条破片反导战斗部初始抛撒状态的影响 [J]. 战术导弹技术, 2015(2): 106–112. DOI: 10.16358/j.issn.1009-1300.2015.02.19.

    ZHANG H S, LIU X L, LUO X. Research on the influence of the initial scattering state of the pole type anti-ballistic missile warhead by controlled shock wave [J]. Tactical Missile Technology, 2015(2): 106–112. DOI: 10.16358/j.issn.1009-1300.2015.02.19.
    [12]
    王树山. 终点效应学 [M]. 2版. 北京: 科学出版社, 2019.

    WANG S S. Terminal effects [M]. 2nd ed. Beijing: Science Press, 2019.
    [13]
    谭振, 陈鹏万, 周强, 等. 战斗部轴向威力的增强 [J]. 爆炸与冲击, 2018, 38(4): 876–882. DOI: 10.11883/bzycj-2016-0342.

    TAN Z, CHEN P W, ZHOU Q, et al. Enhancement of axial lethality of warhead [J]. Explosion and Shock Waves, 2018, 38(4): 876–882. DOI: 10.11883/bzycj-2016-0342.
    [14]
    MA Y, HE Y, WANG C T, et al. Influence of lining materials on the detonation driving of fragments [J]. Journal of Mechanical Science and Technology, 2022, 36(3): 1337–1350. DOI: 10.1007/s12206-022-0223-6.
    [15]
    余庆波, 王海福, 金学科, 等. 缓冲材料对活性破片战斗部爆炸驱动影响分析 [J]. 北京理工大学学报, 2013, 33(2): 121–126. DOI: 10.3969/j.issn.1001-0645.2013.02.003.

    YU Q B, WANG H F, JIN K X, et al. Influence of buffer material on explosive driven of reactive fragment warhead [J]. Transactions of Beijing Institute of Technology, 2013, 33(2): 121–126. DOI: 10.3969/j.issn.1001-0645.2013.02.003.
    [16]
    王爽, 陈放, 王磊. 考虑衬层/隔层的爆炸驱动金属颗粒飞散特性研究 [J]. 兵器装备工程学报, 2022, 43(3): 87–93. DOI: 10.11809/bqzbgcxb2022.03.013.

    WANG S, CHEN F, WANG L. Dispersion characteristics of tungsten carbide particles driven by explosion considering interlayer/liner [J]. Journal of Ordnance Equipment Engineering, 2022, 43(3): 87–93. DOI: 10.11809/bqzbgcxb2022.03.013.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(18)  / Tables(4)

    Article Metrics

    Article views (509) PDF downloads(154) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return