Citation: | JI Haibo, WANG Xin, ZHAO Zhenyu, ZHAO Zhongnan, LI Xue, HAN Jiatong, LU Tianjian. Simulation on penetration of a flat-nosed projectile with attack angle into aramid laminates having varying thickness[J]. Explosion And Shock Waves, 2023, 43(6): 063302. doi: 10.11883/bzycj-2022-0231 |
[1] |
王晓强, 朱锡. 舰船用钢的抗弹道冲击性能研究进展 [J]. 中国造船, 2010, 51(1): 227–236.
|
[2] |
李典, 侯海量, 朱锡, 等. 舰船装甲防护结构抗弹道冲击的研究进展 [J]. 中国造船, 2018, 59(1): 237–250.
|
[3] |
李营, 张磊, 赵鹏铎, 等. 舰船抗反舰导弹技术研究进展与发展路径 [J]. 中国造船, 2016, 57(4): 186–196. DOI: 10.3969/j.issn.1000-4882.2016.04.021.
|
[4] |
辛春亮, 王俊林, 薛再清, 等. 反舰导弹战斗部现状及发展趋势 [J]. 战术导弹技术, 2016, 6(6): 105–110. DOI: 10.16358/j.issn.1009-1300.2016.06.18.
XIN C L, WANG J L, XUE Z Q, et al. Review on status and development of antiship missile warhead [J]. Tactical Missile Technology, 2016, 6(6): 105–110. DOI: 10.16358/j.issn.1009-1300.2016.06.18.
|
[5] |
王晓强, 虢忠仁, 宫平, 等. 抗弹复合材料在舰船防护上的应用研究 [J]. 工程塑料应用, 2014, 42(11): 143–146. DOI: 10.3969/j.issn.1001-3539.2014.11.030.
WANG X Q, GUO Z R, GONG P, et al. Application research of bulletproof composites in warship protection [J]. Engineering Plastics Application, 2014, 42(11): 143–146. DOI: 10.3969/j.issn.1001-3539.2014.11.030.
|
[6] |
GREGORI D, SCAZZOSI R, NUNES S G, et al. Analytical and numerical modelling of high-velocity impact on multilayer alumina/aramid fiber composite ballistic shields: improvement in modelling approaches [J]. Composites Part B: Engineering, 2020, 187: 107830. DOI: 10.1016/j.compositesb.2020.107830.
|
[7] |
SIKARWAR R S, VELMURUGAN R, GUPTA N K. Ballistic performance of kevlar/epoxy composite laminates [J]. Proceedings of the Indian National Science Academy, 2013, 79(4): 789. DOI: 10.16943/ptinsa/2013/v79i4/48001.
|
[8] |
虢忠仁, 金子明, 钟蔚华, 等. 芳纶复合材料抗钨球性能研究 [J]. 化工新型材料, 2009(1): 3. DOI: 10.3969/j.issn.1006-3536.2009.01.022.
GUO Z R, JIN Z M, ZHONG W H, et al. The research on aramid composite materials defending tungsten alloy sphere [J]. New Chemical Materials, 2009(1): 3. DOI: 10.3969/j.issn.1006-3536.2009.01.022.
|
[9] |
WALSH S M, SCOTT B R, SPAGNUOLO D M. The development of a hybrid thermoplastic ballistic material with application to helmets [R]. Maryland: Army Research Laboratory Aberdeen Proving Ground, 2005.
|
[10] |
WALSH S M, SCOTT B R, SPAGNUOLO D M, et al. Hybridized thermoplastic aramids: enabling material technology for future force headgear [R]. Maryland: Army Research Laboratory, Aberdeen Proving Ground, Weapons and Materials Research Directorate, 2006.
|
[11] |
吴中伟, 吕攀珂, 高沛, 等. 热固性树脂对芳纶复合材料防弹性能的影响 [J]. 中国个体防护装备, 2012(1): 18–20. DOI: 10.16102/j.cnki.cppe.2012.01.010.
WU Z W, LYU P K, GAO P, et al. Ballistic performance of thermosetting resin on aramid composite materials [J]. China Personal Protective Equipment, 2012(1): 18–20. DOI: 10.16102/j.cnki.cppe.2012.01.010.
|
[12] |
NUNES S G, SCAZZOSI R, MANES A, et al. Influence of projectile and thickness on the ballistic behavior of aramid composites: experimental and numerical study [J]. International Journal of Impact Engineering, 2019, 132: 103307. DOI: 10.1016/j.ijimpeng.2019.05.021.
|
[13] |
GUO G, ALAM S, PEEL L D. An investigation of the effect of a Kevlar-29 composite cover layer on the penetration behavior of a ceramic armor system against 7.62 mm APM2 projectiles [J]. International Journal of Impact Engineering, 2021, 157: 104000. DOI: 10.1016/j.ijimpeng.2021.104000.
|
[14] |
MANES A, BRESCIANI L M, GIGLIO M. Ballistic performance of multi-layered fabric composite plates impacted by different 7.62 mm calibre projectiles [J]. Procedia Engineering, 2014, 88: 208–215. DOI: 10.1016/j.proeng.2014.11.146.
|
[15] |
MILLÁN M R, MORENO C E, MIGUÉLEZ H, et al. Numerical analysis of the ballistic behaviour of Kevlar composite under impact of double-nosed stepped cylindrical projectiles [J]. Journal of Reinforced Plastics and Composites, 2016, 35(2): 124–137. DOI: 10.1177/0731684415608004.
|
[16] |
GOLDSMITH W. Non-ideal projectile impact on targets [J]. International Journal of Impact Engineering, 1999, 22(2/3): 95–395. DOI: 10.1016/S0734-743X(98)00031-1.
|
[17] |
张明. Kevlar129/EVA复合材料抗弹性能数值模拟研究 [D]. 太原: 中北大学, 2016.
ZHANG M. Numerical simulation research of ballistic performance of Kevlar129/EVA composites [D]. Taiyuan, Shanxi, China: North University of China, 2016.
|
[18] |
汤雪志, 王志军, 董理赢, 等. 弹丸斜撞击间隔靶板的数值模拟 [J]. 兵器装备工程学报, 2019, 40(6): 47–50. DOI: 10.11809/bqzbgcxb2019.06.011.
TANG X Z, WANG Z J, DONG L Y, et al. Numerical simulation analysis of projectile oblique impact target plate [J]. Journal of Ordnance Equipment Engineering, 2019, 40(6): 47–50. DOI: 10.11809/bqzbgcxb2019.06.011.
|
[19] |
张昆, 罗刚, 谢伟. 低碳金属板对带攻角侵彻弹体的动态响应仿真分析 [J]. 计算机辅助工程, 2019, 28(2): 63–67. DOI: 10.13340/j.cae.2019.02.013.
ZHANG K, LUO G, XIE W. Simulation analysis on dynamic response of penetration projectile with attack angle against low carbon metal plate [J]. Computer Aided Engineering, 2019, 28(2): 63–67. DOI: 10.13340/j.cae.2019.02.013.
|
[20] |
叶墡君. 高速弹体对舰船空间板架结构侵彻规律研究 [D]. 哈尔滨: 哈尔滨工程大学, 2020.
YE S J. Research on the penetration law of high speed projectile into the space frame structure of warship [D]. Harbin, Heilongjiang, China: Harbin Engineering University, 2020.
|
[21] |
刘坚成, 张雷雷, 徐坤, 等. 反弹道非正侵彻的弹体结构响应实验研究 [J]. 兵工学报, 2019, 40(9): 1797–1803. DOI: 10.3969/j.issn.1000-1093.2019.09.005.
LIU J C, ZHANG L L, XU K, et al. Structural response of projectile in reverse ballistic non-normal penetrating experiment [J]. Acta Armamentarii, 2019, 40(9): 1797–1803. DOI: 10.3969/j.issn.1000-1093.2019.09.005.
|
[22] |
张航. 弹体撞击金属靶板偏转特性研究 [D]. 哈尔滨: 哈尔滨工业大学, 2019.
ZHANG H. Research on deflection characteristics of projectile impacting metal plate [D]. Harbin, Heilongjiang, China: Harbin Institute of Technology, 2019.
|
[23] |
郭松林, 高世桥, 李泽章, 等. 弹引系统攻角侵彻混凝土仿真与试验研究 [J]. 兵器装备工程学报, 2022, 43(1): 135–139. DOI: 10.11809/bqzbgcxb2022.01.021.
GUO S L, GAO S Q, LI Z Z, et al. Experiment and simulation of projectile obliquely penetrating into concrete target at attack angle [J]. Journal of Ordnance Equipment Engineering, 2022, 43(1): 135–139. DOI: 10.11809/bqzbgcxb2022.01.021.
|
[24] |
李鹏程, 张先锋, 刘闯, 等. 攻角和入射角对弹体侵彻混凝土薄靶弹道特性影响规律研究 [J]. 爆炸与冲击, 2022, 42(11): 113302. DOI: 10.11883/bzycj-2021-0435.
LI P C, ZHANG X F, LIU C, et al. Study on the influence of pitch and trajectory angle on penetration of projectiles into thin concrete targets [J]. Explosion and Shock Waves, 2022, 42(11): 113302. DOI: 10.11883/bzycj-2021-0435.
|
[25] |
姚熊亮, 王治, 叶墡君, 等. 球头弹体侵彻舰船板架加强筋时的攻角变化简化理论模型 [J]. 爆炸与冲击, 2021, 41(3): 033301. DOI: 10.11883/bzycj-2020-0092.
YAO X L, WANG Z, YE S J, et al. A simplified theoretical model for attack angle change of a hemisphericallynosed projectile while penetrating the stiffener of a ship plate frame [J]. Explosion and Shock Waves, 2021, 41(3): 033301. DOI: 10.11883/bzycj-2020-0092.
|
[26] |
MO G L, LIU J, MA Q W, et al. Influence of impact velocity and impact attack angle of bullets on damage of human tissue surrogate: ballistic gelatin [J]. Chinese Journal of Traumatology, 2022:DOI: 10. 1016/j. cjtee. 2022. 03. 004.
|
[27] |
吴世永, 李慧, 宿德志. 具有攻角的钨合金弹侵彻运动靶板的数值模拟研究 [J]. 兵器装备工程学报, 2019, 40(7): 20–24. DOI: 10.11809/bqzbgcxb2019.07.005.
WU S Y, LI H, SU D Z. Numerical simulation study of tungsten alloy projectile penetrating moving target with angle of attack [J]. Journal of Ordnance Equipment Engineering, 2019, 40(7): 20–24. DOI: 10.11809/bqzbgcxb2019.07.005.
|
[28] |
符云帆. 卵形弹对多层靶板的侵彻毁伤效应研究 [D]. 湖南湘潭:湘潭大学, 2020.
FU Y F. Research on damage effect of oval projectile penetrating multi-layer targets [D]. Xiangtan, Hunan, China: Xiangtan University, 2020.
|
[29] |
CHEESEMAN B A, BOGETTI T A. Ballistic impact into fabric and compliant composite laminates [J]. Composite Structures, 2003, 61(1/2): 161–173. DOI: 10.1016/S0263-8223(03)00029-1.
|
[30] |
GOWER H L, CRONIN D S, PLUMTREE A. Ballistic impact response of laminated composite panels [J]. International Journal of Impact Engineering, 2008, 35(9): 1000–1008. DOI: 10.1016/j.ijimpeng.2007.07.007.
|
[31] |
CHEN X W, LI Q M. Shear plugging and perforation of ductile circular plates struck by a blunt projectile [J]. International Journal of Impact Engineering, 2003, 28(5): 513–536. DOI: 10.1016/S0734-743x(02)00077-5.
|
[32] |
CHEN X W, LI Q M, FAN S C. Initiation of adiabatic shear failure in a clamped circular plate struck by a blunt projectile [J]. International Journal of Impact Engineering, 2005, 31(7): 877–893. DOI: 10.1016/j.ijimpeng.2004.04.011.
|
[33] |
DONG Y L, ZI F, YANG L H, et al. Research on anti-penetration performance of composite armor of steel/composite materials [J]. Mechanics of Advanced Materials and Structures,, 2021, 29(28): 7035–7050. DOI: 10.1080/15376494.2021.1991061.
|
[34] |
BORVIK T, DEY S, CLAUSEN A H. Perforation resistance of five different high-strength steel plates subjected to small-arms projectiles [J]. International Journal of Impact Engineering, 2009, 36(7): 948–964. DOI: 10.1016/j.ijimpeng.2008.12.003.
|
[35] |
GILIOLI A, MANES A, GIGLIO M, et al. Predicting ballistic impact failure of aluminium 6061-T6 with the rate-independent Bao-Wierzbicki fracture model [J]. International Journal of Impact Engineering, 2015, 76: 207–220. DOI: 10.1016/j.ijimpeng.2014.10.004.
|
[36] |
RUBIO I, RODRIGUEZ-MILLAN M, MARCO M, et al. Ballistic performance of aramid composite combat helmet for protection against small projectiles [J]. Composite Structures, 2019, 226: 111153. DOI: 10.1016/j.compstruct.2019.111153.
|
[37] |
HALLQUIST J. LS-DYNA keyword user’s manual, version: 970 [M]. Livermore, California: Livermore Software Technology Corporation, 2003.
|
[38] |
DZ A, YING S A, LI C A, et al. Influence of fabric structure and thickness on the ballistic impact behavior of ultrahigh molecular weight polyethylene composite laminate [J]. Materials and Design, 2014, 54: 315–322. DOI: 10.1016/j.matdes.2013.08.074.
|
[39] |
MA D Y, MANES A, AMICO S C, et al. Ballistic strain-rate-dependent material modelling of glass-fibre woven composite based on the prediction of a meso-heterogeneous approach [J]. Composite Structures, 2019, 216: 187–200. DOI: 10.1016/j.compstruct.2019.02.102.
|
[40] |
YU R, LI X, YUE Z, et al. Stress state sensitivity for plastic flow and ductile fracture of L907A low-alloy marine steel: from tension to shear [J]. Materials Science and Engineering: A, 2022, 835: 142689. DOI: 10.1016/j.msea.2022.142689.
|
[41] |
MURA T. High velocity deformation of solids [M]. Springer-Verlag, 1979.
|
[42] |
JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. DOI: 10.1016/0013-7944(85)90052-9.
|
[43] |
ZERILLI F J, ARMSTRONG R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations [J]. Journal of Applied Physics, 1987, 61(5): 1816–1825. DOI: 10.1063/1.338024.
|
[44] |
STEINBERG D, GUINAN M. Constitutive relations for the KOSPALL code: UCID-16326 [R]. Livermore, California: Lawrence Livermore National Laboratory, 1973.
|
[45] |
陈刚, 陈小伟, 陈忠富, 等. A3钢钝头弹撞击45钢板破坏模式的数值分析 [J]. 爆炸与冲击, 2007, 27(5): 390–397. DOI: 10.11883/1001-1455(2007)05-0390-08.
CHEN G, CHEN X W, CHEN Z F, et al. Simulations of A3 steel blunt projectiles impacting 45 steel plates [J]. Explosion and Shock Waves, 2007, 27(5): 390–397. DOI: 10.11883/1001-1455(2007)05-0390-08.
|
[46] |
WANG X, YU R P, ZHANG Q C, et al. Dynamic response of clamped sandwich beams with fluid-filled corrugated cores [J]. International Journal of Impact Engineering, 2020, 139: 103533. DOI: 10.1016/j.ijimpeng.2020.103533.
|
[47] |
WANG X, HE C, YUE Z, et al. Shock resistance of elastomer-strengthened metallic corrugated core sandwich panels [J]. Composites Part B: Engineering, 2022, 237: 109840. DOI: 10.1016/j.compositesb.2022.109840.
|
[48] |
LAMBERT J P J, G. H. Towards standardization in terminal ballistics testing: velocity representation [R]. Maryland: Army Research Laboratory Aberdeen Proving Ground, 1976.
|
[49] |
ZHANG R, HAN B, ZHONG J Y, et al. Enhanced ballistic resistance of multilayered cross-ply UHMWPE laminated plates [J]. International Journal of Impact Engineering, 2022, 159: 104035. DOI: 10.1016/j.ijimpeng.2021.104035.
|
[50] |
KARTHIKEYAN K, RUSSELL B P. Polyethylene ballistic laminates: failure mechanics and interface effect [J]. Materials and Design, 2014, 63: 115–125. DOI: 10.1016/j.matdes.2014.05.069.
|