Volume 43 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
MIAO Chunhe, XU Songlin, MA Hao, YUAN Liangzhu, LU Jianhua, WANG Pengfei. An experimental technique for medium strain-rate loading by a progressive cam[J]. Explosion And Shock Waves, 2023, 43(3): 034101. doi: 10.11883/bzycj-2022-0344
Citation: MIAO Chunhe, XU Songlin, MA Hao, YUAN Liangzhu, LU Jianhua, WANG Pengfei. An experimental technique for medium strain-rate loading by a progressive cam[J]. Explosion And Shock Waves, 2023, 43(3): 034101. doi: 10.11883/bzycj-2022-0344

An experimental technique for medium strain-rate loading by a progressive cam

doi: 10.11883/bzycj-2022-0344
  • Received Date: 2022-08-09
  • Rev Recd Date: 2022-10-08
  • Available Online: 2022-10-12
  • Publish Date: 2023-03-05
  • A medium strain rate compression experimental system based on a progressive cam was developed to realize multiple medium strain rate loading. The developed experimental system uses the servo motor to drive the energy storage flywheel to rotate at a certain speed, and when the clutch is started, the energy storage flywheel can drive the loading cam to rotate. The loading cam pushes the loading guide bar and the input bar to compress the sample. When the loading cam rotates one circle, a single medium strain-rate compression is completed. At the same time, when the first stage compression is about to end, the stepper motor rapidly pushes the energy storage flywheel close to the loading cam for the next compression, and the cycles repeat to achieve multiple medium strain rate compression. The load and deformation of the material during compression were measured by strain gauges and a velocity interferometer system for any reflector (VISAR), respectively. The strain gauges were affixed to the input bar and the support bar, respectively. The strain signals of the bars during compression were recorded by the strain gauges and the forces exerted on the sample were obtained based on these strain signals. Two fiber optic probes of the VISAR system were used to measure the velocities of the input bar and the support bar during compression. Based on the two velocity curves measured, the velocity difference curve between the two ends of the sample was obtained, and then the deformation of the sample was gained by integrating the velocity difference. The stress-strain curves were obtained from the load- and deformation-time curves. Taking the paper honeycomb sample as an example, the reliability of the developed medium strain rate experimental system was discussed based on the high-speed images. The dynamic compressive mechanical properties of the paper honeycomb samples with the thickness of 10 mm and the diameter of 14.5 mm at the strain rate of 3.5 s−1 were studied. The stress-strain curves and deformation processes of the paper honeycomb samples during single compression and double compression were obtained. The experimental system could realize multistage progressive medium strain rate loading. The peak strength and plateau stress of the paper honeycomb samples at medium strain rates well connect the dynamic compression results at high strain rates with the quasi-static compression results at low strain rates. The failure modes of the samples are mainly out-of-plane buckling and in-plane shear after quasi-elastic deformation.
  • loading
  • [1]
    HUANG J, XU S, YI H, et al. Size effect on the compression breakage strengths of glass particles [J]. Powder Technology, 2014, 268: 86–94. DOI: 10.1016/j.powtec.2014.08.037.
    [2]
    薛晓, 乔禹, 王鹏飞, 等. 碳纳米管纤维的动态拉伸力学性能研究 [J]. 实验力学, 2020, 35(5): 811–819. DOI: 10.7520/1001-4888-19-213.

    XUE X, QIAO Y, WANG P F, et al. Dynamic tensile mechanical properties of carbon nanotube fiber [J]. Journal of Experimental Mechanics, 2020, 35(5): 811–819. DOI: 10.7520/1001-4888-19-213.
    [3]
    MIAO C H, XU S L, SONG Y P, et al. Influence of stress state on dynamic breakage of quartz glass spheres subjected to lower velocity impacting [J]. Powder Technology, 2022, 397: 117081. DOI: 10.1016/j.powtec.2021.117081.
    [4]
    袁良柱, 苗春贺, 单俊芳, 等. 冲击下混凝土试样应变率效应和惯性效应探讨 [J]. 爆炸与冲击, 2022, 42(1): 013101. DOI: 10.11883/bzycj-2021-0114.

    YUAN L Z, MIAO C H, SHAN J F, et al. On strain-rate and inertia effects of concrete samples under impact [J]. Explosion and Shock Waves, 2022, 42(1): 013101. DOI: 10.11883/bzycj-2021-0114.
    [5]
    郑监, 卢芳云. 金属梁在预应力下的冲击响应 [J]. 爆炸与冲击, 2021, 41(3): 031401. DOI: 10.11883/bzycj-2020-0328.

    ZHENG J, LU F Y. On impact response of a prestressed metal beam [J]. Explosion and Shock Waves, 2021, 41(3): 031401. DOI: 10.11883/bzycj-2020-0328.
    [6]
    HUH H, LIM J H, PARK S H. High speed tensile test of steel sheets for the stress-strain curve at the intermediate strain rate [J]. International Journal of Automotive Technology, 2009, 10(2): 195–204. DOI: 10.1007/s12239-009-0023-3.
    [7]
    FROUSTEY C, LAMBERT M, CHARLES J L, et al. Design of an impact loading machine based on a flywheel device: application to the fatigue resistance of the high rate pre-straining sensitivity of aluminium alloys [J]. Experimental Mechanics, 2007, 47(6): 709–721. DOI: 10.1007/s11340-007-9082-4.
    [8]
    COLE B N, STURGES J L. The flying wedge: a method for high strain rate tensile testing. Part 2: characteristics of the device [J]. International Journal of Impact Engineering, 2003, 28(8): 891–908. DOI: 10.1016/S0734-743X(03)00003-4.
    [9]
    PETITEAU J C, OTHMAN R, GUÉGAN P, et al. A drop-bar setup for the compressive testing of rubber-like materials in the intermediate strain rate range [J]. Strain, 2014, 50(6): 555–562. DOI: 10.1111/str.12113.
    [10]
    PEROGAMVROS N, MITROPOULOS T, LAMPEAS G. Drop tower adaptation for medium strain rate tensile testing [J]. Experimental Mechanics, 2016, 56(3): 419–436. DOI: 10.1007/s11340-015-0112-3.
    [11]
    WHITTINGTON W R, OPPEDAL A L, FRANCIS D K, et al. A novel intermediate strain rate testing device: the serpentine transmitted bar [J]. International Journal of Impact Engineering, 2015, 81: 1–7. DOI: 10.1016/j.ijimpeng.2015.02.009.
    [12]
    ZHU D, RAJAN S D, MOBASHER B, et al. Modal analysis of a servo-hydraulic high speed machine and its application to dynamic tensile testing at an intermediate strain rate [J]. Experimental Mechanics, 2011, 51(8): 1347–1363. DOI: 10.1007/s11340-010-9443-2.
    [13]
    OTHMAN R, GUÉGAN P, CHALLITA G, et al. A modified servo-hydraulic machine for testing at intermediate strain rates [J]. International Journal of Impact Engineering, 2009, 36(3): 460–467. DOI: 10.1016/j.ijimpeng.2008.06.003.
    [14]
    LI Z, WANG T, JIANG Y, et al. Design-oriented crushing analysis of hexagonal honeycomb core under in-plane compression [J]. Composite Structures, 2018, 187: 429–438. DOI: 10.1016/j.compstruct.2017.12.066.
    [15]
    ZHOU H, XU P, XIE S C, et al. Mechanical performance and energy absorption properties of structures combining two Nomex honeycombs [J]. Composite Structures, 2018, 185: 524–536. DOI: 10.1016/j.compstruct.2017.11.059.
    [16]
    WANG Z G, LI Z D, XIONG W. Experimental investigation on bending behavior of honeycomb sandwich panel with ceramic tile face-sheet [J]. Composites Part B: Engineering, 2019, 164: 280–286. DOI: 10.1016/j.compositesb.2018.10.077.
    [17]
    WANG Z G, TIAN H Q, LU Z J, et al. High-speed axial impact of aluminum honeycomb: experiments and simulations [J]. Composites Part B: Engineering, 2014, 56: 1–8. DOI: 10.1016/j.compositesb.2013.07.013.
    [18]
    SIBEAUD J M, THAMIÉ L, PUILLET C. Hypervelocity impact on honeycomb target structures: experiments and modeling [J]. International Journal of Impact Engineering, 2008, 35(12): 1799–1807. DOI: 10.1016/j.ijimpeng.2008.07.037.
    [19]
    ZHOU X L, ZHOU H F, LI X Y, et al. Size effects on tensile and compressive strengths in metallic glass nanowires [J]. Journal of the Mechanics and Physics of Solids, 2015, 84: 130–144. DOI: 10.1016/j.jmps.2015.07.018.
    [20]
    ZHOU Q, MAYER R R. Characterization of aluminum honeycomb material failure in large deformation compression, shear, and tearing [J]. Journal of Engineering Materials and Technology, 2002, 124(4): 412–420. DOI: 10.1115/1.1491575.
    [21]
    HOU B, ZHAO H, PATTOFATTO S, et al. Inertia effects on the progressive crushing of aluminium honeycombs under impact loading [J]. International Journal of Solids and Structures, 2012, 49(19/20): 2754–2762. DOI: 10.1016/j.ijsolstr.2012.05.005.
    [22]
    WANG Z G, LI Z D, XIONG W. Numerical study on three-point bending behavior of honeycomb sandwich with ceramic tile [J]. Composites Part B: Engineering, 2019, 167: 63–70. DOI: 10.1016/j.compositesb.2018.11.108.
    [23]
    WANG D M. Impact behavior and energy absorption of paper honeycomb sandwich panels [J]. International Journal of Impact Engineering, 2009, 36(1): 110–114. DOI: 10.1016/j.ijimpeng.2008.03.002.
    [24]
    HEIMBS S, SCHMEER S, MIDDENDORF P, et al. Strain rate effects in phenolic composites and phenolic-impregnated honeycomb structures [J]. Composites Science and Technology, 2007, 67(13): 2827–2837. DOI: 10.1016/j.compscitech.2007.01.027.
    [25]
    SHAN J F, XU S L, ZHOU L J, et al. Dynamic fracture of aramid paper honeycomb subjected to impact loading [J]. Composite Structures, 2019, 223: 110962. DOI: 10.1016/j.compstruct.2019.110962.
    [26]
    范成年, 张磊, 单俊芳, 等. 复合纸蜂窝结构的力学性能与吸能特性研究 [J]. 实验力学, 2021, 36(5): 627–637. DOI: 10.7520/1001-4888-21-001.

    FAN C N, ZHANG L, SHAN J F, et al. The mechanical performance and energy absorption properties of composite paper honeycomb structures [J]. Journal of Experimental Mechanics, 2021, 36(5): 627–637. DOI: 10.7520/1001-4888-21-001.
    [27]
    徐松林, 单俊芳, 周李姜, 等. 对试样进行中等应变速率压缩的实验装置: CN109781555A [P]. 2019-05-21. 北京: 北京集佳知识产权代理有限公司, 2019.
    [28]
    RUAN D, LU G, CHEN F L, et al. Compressive behaviour of aluminium foams at low and medium strain rates [J]. Composite Structures, 2002, 57(1): 331–336. DOI: 10.1016/S0263-8223(02)00100-9.
    [29]
    XU S Q, RUAN D, BEYNON J H, et al. Experimental investigation of the dynamic behavior of aluminum foams [J]. Materials Science Forum, 2010, 654/655/656: 950–953. DOI: 10.4028/www.scientific.net/MSF.654-656.950.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (356) PDF downloads(70) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return